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Flow-Arrest Transition in Granular Materials

clogging in hopper landslide runout probability
McDougall, NRC Press (2014)

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?



Will Flowing Granular Material Arrest (Jam)!?
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what is the phase diagram under controlled pressure conditions?



When will Flowing Granular Material Arrest!?

distribution of clog times in silo discharge . diverging shear jamming
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need a better characterization of transient flow before arrest



When it does Flow, how does it Flow! (Rheology)

inertial granular rheology
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does this rheology sufficiently characterize 3D granular shear flows?
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Flow-Arrest Transition: Problem Statement

Tangand B’ehﬂnger Chaéé'(ZOH) McDougall, NRC Press (2014)

under prescribed shear and pressure:

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?

representative
volume element
under shear &
pressure



DEM Simulation Protocol

Srivastava, PRL (2019)
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Flow-Arrest Transition: Problem Statement

Tangand B’ehﬂnger Chaéé'(ZOH) McDougall, NRC Press (2014)

under prescribed shear and pressure:

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?

representative
volume element
under shear &
pressure



Example: Granular Flow vs. Arrest

steady flow
initial dilute system: ¢ = 0.05 - )

0 shear arrest

Srivastava, PRL (2019)




Flow-Arrest Phase Diagram
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Paths to Flow or Arrest
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Coordination at Flow-Arrest Transition

coordination Z
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Fabric at Flow-Arrest
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Flow-Arrest Transition: Problem Statement

under prescribed shear and pressure:

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?

representative
volume element
under shear &
pressure
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Time to Arrest is Stochastic

shear arrest

e

four random cases, same stress
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Volume Fraction at Arrest is Deterministic
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difficult to predict when a flow will arrest,
but sure of volume fraction & coordination upon arrest

Srivastava, PRL (2019) 16



Time to Arrest: Long-tailed Distributions
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Divergence of Mean Arrest Times
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Critical Exponents

Power-law Divergence
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Flow-Arrest Transition: Problem Statement

under prescribed shear and pressure:

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?

representative
volume element
under shear &
pressure
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Planar Shear Rheology

after appropriate coordinate transformation
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5 Rheology
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Shear Stress and Dilation

Srivastava (in prep.)
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First Normal Stress Difference?
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Second Normal Stress Difference!
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2" Normal Stress Difference Vanishes at RCP

0.0 s—4 RCP flow plane
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Granular Rheology: Planar Shear Flows
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stress tensor for steady
stress tensor (viscometric flow) planar granular shear flow
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Conclusions & Outlook

IF: flow-arrest WHEN: diverging HOW: beyond

Z diagram arrest times w(I)rheology
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are shear-arrested states fragile/stable? a la [Bi, Behringer, Nature (2011)]
%
S is there a diverging length scale at shear-arrest near critical yield?
5
o

how do normal stresses manifest in flow fields? dilation-driven
vortex flows? [Krishanraj and Nott, Nature (2016)]
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Stress States atYielding and Flow
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