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Flow-Arrest Transition in Granular Materials
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1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?
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Will Flowing Granular Material Arrest (jam)?

A frictionless

Unjammed

Bi, Nature (2011)

A frictional

Unjammed Jammed

SJ

F

what is the phase diagram under controlled pressure conditions?



When will Flowing Granular Material Arrest?

distribution of clog times in silo discharge
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need a better characterization of transient flow before arrest



When it does Flow, how does it Flow? (Rheology)
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inertial granular rheology
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Jop, Nature (2006)
3 4 5

inertial Number: I = ,yd
(d : diameter
P: density)

stress ratio: Pi
T

P

p
P

inertial rheology: — Ps + 
[is Pis 
1-01I + 1

(monotonic, yield
criterion)

does this rheology sufficiently characterize 3D granular shear flows?
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Flow-Arrest Transition: Problem Statement

representative
volume element
under shear Et

pressure

McDougall, NRC Press (2014)

under prescribed shear and pressure:

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?



DEM Simulation Protocol

o Ta 0

Pal- -k[Ta 0 0

0 0 0

Parinello-Rahman dynamics
(isenthalpic-isotension ensemble in MD)

• fully periodic: no boundary effects
• uniform surface traction
• homogenous deformation/flow
• no shear bands

Srivastava, PRL (2019)

rcontact mechanic

Hookean contacts

Fri
—rvv\,—,
-1 I--,

Coulomb surface friction 

Fs I

I

IF,Il < pisl Fri

7



Flow-Arrest Transition: Problem Statement

representative
volume element
under shear Et

pressure

McDougall, NRC Press (2014)

under prescribed shear and pressure:

. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?



Example: Granular Flow vs. Arrest

initial dilute system: 0.05
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Srivastava, PRL (2019)

steady flow

shear arrest



Flow-Arrest Phase Diagram
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Paths to Flow or Arrest
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Coordination at Flow-Arrest Transition
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Fabric at Flow-Arrest
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Flow-Arrest Transition: Problem Statement

representative
volume element
under shear Et

pressure

McDougall, NRC Press (2014)

under prescribed shear and pressure:

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?



Time to Arrest is Stochastic

shear arrest

10-12

Srivastava, PRL (2019)

four random cases, same stress

quasi-steady flow

arrest events te

/
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Volume Fraction at Arrest is Deterministic
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Time to Arrest: Long-tailed Distributions

11 1

frictionless med. friction high friction

HO 105 106 104 105

arrest times: complementary cumulative distribution

increasing stress ratio

long-tailed log-
normal distribution of

arrest times

longer tails at higher
stress ratio

Srivastava, PRL (2019) 17



Divergence of Mean Arrest Times
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Power-law Divergence: Critical Exponents
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Flow-Arrest Transition: Problem Statement

representative
volume element
under shear Et

pressure

under prescribed shear and pressure:

1. Will the flow arrest?
2. When will the flow arrest?
3. If it flows, how does it flow?
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Planar Shear Rheology

Cauchy stress
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Shear Stress and Dilation
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First Normal Stress Difference?
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Second Normal Stress Difference?
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2nd Normal Stress Difference Vanishes at RCP
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Granular Rheology: Planar Shear Flows
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stress tensor (viscometric flow)
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Goddard (1986); Rajagopal (1994); Massoudi (2001)
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Conclusions & Outlook
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HOW: beyond
p,(I) rheology
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• are shear-arrested states fragile/stable? a la [Bil Behringer, Nature (2011)]

• is there a diverging length scale at shear-arrest near critical yield?

• how do normal stresses manifest in flow fields? dilation-driven
vortex flows? [Krishanraj and Nott, Nature (2016)]

0.64
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Stress States atYielding and Flow

AE(t) fr LAuidS

change in
kinetic energy

Arrest (Jammed):

Yielding:

boundary traction work
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equilibrium: balance of
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rapid increase in
kinetic energy: imbalance of
internal and external stresses

Hill, J. Mech. Phys. Sol., 6, 1958 28


