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2 I Standard Radial AC Feeder

Time overcurrent relay typically utilized
Energy comes from a single source

Closest breaker between energy source and fault should trip first
° Backed up by breakers in order of closeness to fault along fault path

Underlying assumption
° Sufficient energy is available to feed the fault

° Device settings allow for

° Full load
° Temporary overload (by some predefined percentage of full load)

> Nonoperation during short transients




Integration of Renewable Energy Sources

Renewable energy sources such as solar and wind are
stochastic in nature and require and additional power
electronics interface.

° Solar energy: depends on weather/time of day

> Wind energy: depends on weather

° Both: Require energy storage for optimal operation

Energy output
° PV arrays: dc current generated

> Wind Farms: ac current of varying frequency is converted to
dc before final ac conversion

Both require inversion to recouple to grid or distribute 8
to customers




.| Current Limited Inverters =F

Consider a radial system with a dc

source coupled to a distribution system s B T
through an inverter Main Grid W=l (ol

High power inverters are costly

°'To protect this high cost equipment current
is limited using programming
° Peak current is immediately cut beyond inverter limit
o Inverter will time out for a sustained fault

This may result in undesired operation — |
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;| Options tor Protection of Inverter

Sourced Systems

(1) Develop protection schemes unique to these systems
° Pro: Will allow for solutions better tuned to the problem at hand
> Con: May require substantial research/development investment

(2) Repurpose traditional methods for application to inverter bases
systems
° Pro: May not require purchase of any custom hardware

° Con: General solution may not allow for optimal operation

Here (2) 1s chosen primarily because repurposing existing
equipment

° Can allow for reapplication of surplus equipment

° Can potentially reduce/eliminate additional training time for technicians



oI Problem Overview

Problem

° Inverter sourced systems have a programmed current cutotf
° Cutoft may limit current too aggressively during a fault

° Cutoft may not be overridden as its purpose is avoid damaging
the costly inverter

°Seek to use standard inverse time overcurrent protection for
radial lines without having to develop or purchase more costly
equipment

Proposed solution

° Place small energy storage unit in parallel with limited source

° Flywheel/Synchronous condenser
° Supercapacitor
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. | Modeling of Inverse Time

For this paper, the SEL U3
relay (very inverse) is modeled.
> The time-current characteristic

(TCC) for the SEL U3 relay 1s
 treray = TDS (0.0963 + 288

M2—1)

(43
o TDS = time dial setting g
(]
@
[ia)

> M = multiples of tap current
° trelqy = relay operation time

o The TCC for the SEL U3 is shown to
the right (calculated)

° Each curve from bottom to top
represents an increasing time dial

setting (TDS)

OC relays

SEL U3 Relay Time-Current Characterisitc
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» 1Overall Relay Model

To model this phenomenon, the
relay is modeled as a timer which
can increment or decrement.

The flowchart to the right ve

demonstrates this process

tcounter := max(tcounter-tsym,0)

Breaker remains closed

trelay 1s as eatlier defined

tcounter :=tcounter+tsym

Yes

tsym is the simulation step size
I Fault is time varying fault
current

L5y, 1s the pickup current



° ! Energy Storage Sizing: Supercapacitor

The energy stored 1n a capacitor 1S
1
o E = E Cv2

where C 1s the capacitance and v is the voltage across the capacitor. Differentiating
yields

dt ~ 2 dt
Assume

° The nominal voltage V,, o, reduces by some fraction & € (0,1) over some sufficiently short time
interval At

° The “constant” power rate over this interval is Pepergize
> Power 1s positive out of the capacitor
° Losses are neglected

The required capacitor size found from the time integral of V2 is
o C > — 2PenergizeAt
o (“2_1)V1%0m




"I Energy Storage Sizing: Flywheel

The energy stored in the rotating inertia of the synchronous condenser is

0E=%]a)2

where J is the inertia and w 1s the angular frequency. Differentiating yields

dE dw?
O P i — i
dt 2 dt

Assume

° The nominal frequency Wy om reduces by some fraction @ € (0,1) over some
sufficiently short time interval At

° The “constant” power rate over this interval is Pepergize
° Power is positive out of the capacitor
° Losses are neglected

The required inertia found from the time integral of w? is
o] > _ ZPenergizeAt

(a? _1)w1210m




» | Energy Storage Sizing

For both the flywheel and supercapacitor case, the goal is for the
storage to deliver

° Penergize = IMW for At = 0.5s with a drop from nominal
(frequency/voltage) of o = 0.5 (50%)

I'he nominal supercapacitor voltage is 2.4 kV

The nominal rotor speed is 60Hz

> An equivalent inertia may be maintained by reducing the inertia and
increasing the speed via a drivebelt/gear to reduce the size of the
flywheel.

This results in
o 2 0.2315F @ 2.4 kV

o] > 21.2318 kg m? @60 Hz



» | Cost Consideration (Flywheel: UPS w. .

Synchronous Condenser)

* Synchronous Condenser

: i

Flywheel UPS
> Commercially available units * Connects directly to ac bus
connect to dc bus * $10-40/kVAR
> $200.000-400.000 * Maintenance cost
> Additional inverter required to | A; i%fs—gﬁ/ kVAR anaually
connect to ac bus B+ 540,000 purchase price

* $800/year maintenance |~

> ~$300,000

* Assuming the most conservative cost estimate for the flywheel UPS
* It would take 200 years for the flywheel cost to reach the cost of the commercial flywheel UPS unit.

* And this doesn’t even include the cost of the additional inverter

* This 1s why the synchronous condenser is selected over the UPS for use as the flywheel

energy storage



“! Cost Consideration (Supercapacitor) d

Limited to what sizes are available
Will likely have stack units 1n an array to get desired capacitance
At a common retailer, the largest supercapacitor is rated at 160V /5.8F

Stacking these in series to reach 2.4 kV
> Will require 15 units
° Reducing the capacitance to 0.3867 I
°'This 1s exceeds the desired minimum of 0.2315 F.

At a cost of $§934.82 each, the total investment in supercapacitors would be

$14,022.30.
Again, the 1 MW grid-ties inverter would be in the range of ~$300,000.




Cost considerations (Summary)

'he most expensive case is the flywheel UPS/Inverter

‘'he second most expensive is the Supercapacitor/Inverter

1

'he most cost effective option seems to be the synchronous condenser

based flywheel option.

Other considerations

> For more degrees of freedom in controls, the supercapacitor/inverter option
1s more 1deal
° The inverter can actively control the bus voltage during a fault

°The synchronous condenser 1s incapable of controlling active power
° This may result in very poor voltage quality during fault ride-through



«! Storage: Active/Standby Modes

Active Mode

° Discharge storage

° Activates when rms bus voltage dips by some predefined
percentage

> Hysteresis band used to avoid excessive switching between
modes

Standby Mode
> Charge storage

> Complementary to active mode

° Gradually charge storage at some predefined rate to avoid
overload of source inverter
° Inverter acts as rectifier to gradually charge supercapacitor
° Starter motor gradually accelerates synchronous condenser to its nominal speed



”l Storage: Active/Standby Modes

(Supercapacitor)

mode 1

mode 0




s ! Storage: Active/Standby Modes (Flywheel)

active standby
mode 1 mode ()

synchonous
condenser

mode 1: close
mode 0: open



19 | Simulation Results

Single 1deal dc energy source coupled to ac system through
3-phase inverter with neutral connection.

380 V bus voltage managed through closed loop pwm
The fault 1s assumed to be 31L.G.

'—

I'he reason for this is that this is the most difficult fault to
clear

°Only 1/3 of the storage is available to energize each phase
°SLG faults are also easter to detect using zero-sequence

overcurrent protection, which will still be available in inverter-
based systems with appropriate grounding.




} | Simulation Results
(Supercapacitor Backup)

Storage modes
° (0 = standby (charging)
° 1 = active (discharge)

nt (A)

3 curre

breaker

Pros
° Designated primary breaker clears fault successfully
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|Simulation Results S
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# I Conclusions/Future Work —

Conclusions

°Both flywheel and supercapacitor storage provide sutficient energy to the clear
fault

° Clearance times were relatively close.

°'The tlywheel case was twice as fast, but a generalization cannot currently be made about
this phenomena

° The synchronous condenser flywheel 1s lower cost

° The supercapacitor/inverter provides better voltage quality+

Future Work

° Logic for switching between active and standby modes need drastic improvement for both
cases

° LG, LL, and LLG faults need to be further investigated
> Most faults are asymmetric

°> Control schemes may need to be altered for these cases
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