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2 I Standard Radial AC Feeder

Time overcurrent relay typically utilized

Energy comes from a single source

Closest breaker between energy source and fault should trip first
O Backed up by breakers in order of closeness to fault along fault path

Underlying assumption
o Sufficient energy is available to feed the fault
o Device settings allow for

O Full load
o Temporary overload (by some predefined percentage of full load)
o Nonoperation during short transients
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3 Integration of Renewable Energy Sources

Renewable energy sources such as solar and wind are
stochastic in nature and require and additional power
electronics interface.
o Solar energy: depends on weather/time of day
o Wind energy: depends on weather
o Both: Require energy storage for optimal operation

Energy output
o PV arrays: dc current generated
o Wind Farms: ac current of varying frequency is converted to
dc before final ac conversion

Both require inversion to recouple to grid or distribute
to customers



1 Current Limited Inverters
Consider a radial system with a dc
source coupled to a distribution system
through an inverter

High power inverters are costly
o Toprotect this high cost equipment current
is limited using programming
o Peak current is immediately cut beyond inverter limit
o Inverter will time out for a sustained fault

This may result in undesired operation
throughout the system.
o Unnecessary loss of service to loads
o Distorted voltage dips during inverter
overload
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5 1 Options for Protection of Inverter
Sourced Systems
(1) Develop protection schemes unique to these systems
o Pro: Will allow for solutions better tuned to the problem at hand
o Con: May require substantial research/development investment

(2) Repurpose traditional methods for application to inverter bases
systems
o Pro: May not require purchase of any custom hardware
o Con: General solution may not allow for optimal operation

Here (2) is chosen primarily because repurposing existing
equipment
o Can allow for reapplication of surplus equipment
o Can potentially reduce/eliminate additional training time for technicians



6 1 Problem Overview

Problem
o Inverter sourced systems have a programmed current cutoff
o Cutoff may limit current too aggressively during a fault
o Cutoff may not be overridden as its purpose is avoid damaging
the costly inverter

o Seek to use standard inverse time overcurrent protection for
radial lines without having to develop or purchase more costly
equipment

Proposed solution
o Place small energy storage unit in parallel with limited source

o Flywheel/Synchronous condenser
o Supercapacitor



7 1Simulation Results
(Uncorrected Case)

Inverter current clipped at
programmed limit

Designated
breaker/backups cannot
clear fault
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8 1 Modeling of Inverse Time OC relays

For this paper, the SEL U3
relay (very inverse) is modeled.
o The time-current characteristic
(TCC) for the SEL U3 relay is

o trelay = TDS (0.0963 + 32it, .881)

o TDS = time dial setting

= multiples of tap current

° trelay = relay operation time

o The TCC for the SEL U3 is shown to
the right (calculated)

o Each curve from bottom to top 0 
1.5

represents an increasing time dial
setting (TDS)
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9 1 Overall Relay Model

To model this phenomenon, the
relay is modeled as a timer which
can increment or decrement.

The flowchart to the right
demonstrates this process

trelay is as earlier defined

tcounter is a timer

tsym is the simulation step size

Ifault is time varying fault
current

/pu is the pickup current
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10 1 Energy Storage Sizing: Supercapacitor

The energy stored in a capacitor is

O E = -
1
Cv

2

2

where C is the capacitance and V is the voltage across the capacitor. Differentiating
yields

O P
dE C dv2

dt 2 dt

Assume
o The nominal voltage Vnoin reduces by some fraction a E (0,1) over some sufficiently short time
interval At

o The "constant" power rate over this interval is Penergize
o Power is positive out of the capacitor

O Losses are neglected

The required capacitor size found from the time integral of v2 is

O C > 2Penergize0t

— 2 (a -1)140m



Energy Storage Sizing: Flywheel
The energy stored in the rotating inertia of the synchronous condenser is

O E = 11(.02

where J is the inertia and co is the angular frequency. Differentiating yields
dE J dco2

O Po = — = —
dt 2 dt

Assume
o The nominal frequency conom reduces by some fraction a E (0,1) over some
sufficiently short time interval At

o The "constant" power rate over this interval is Pen„fli„

o Power is positive out of the capacitor

O Losses are neglected

The required inertia found from the time integral of (02 is
2Penergize0tO >

J — 2 (a -1)(40m,



12 1 Energy Storage Sizing

For both the flywheel and supercapacitor case, the goal is for the
storage to deliver

o 13energize = 1MW for At = O.5s with a drop from nominal
(frequency/voltage) of a = 0.5 (50%)

The nominal supercapacitor voltage is 2.4 kV

The nominal rotor speed is 60Hz
o An equivalent inertia may be maintained by reducing the inertia and
increasing the speed via a drivebelt/gear to reduce the size of the
flywheel.

This results in
O C > 0.2315 F @ 2.4 kV
cl > 21.2318 kg m2 @60 Hz



13 1 Cost Consideration (Flywheel: UPS v.
Synchronous Condenser)

Flywheel UPS • Synchronous Condenser
° Commercially available units 0 Connects directly to ac bus

connect to dc bus • $10-40/kVAR

o $200,000-400,000 • Maintenance cost

0 Additional inverter required to 
• $0.4-0.8/kVAR annually

• At worst
connect to ac bus 

0 —$300,000 ilooillt4
— , • $40,000 purchase price

- • -_. .1 •• $800/year maintenance

• Assuming the most conservative cost estimate for the flywheel UPS
• It would take 200 years for the flywheel cost to reach the cost of the commercial flywheel UPS unit.

• And this doesn't even include the cost of the additional inverter

• This is why the synchronous condenser is selected over the UPS for use as the flywheel
energy storage



14 1 Cost Consideration (Supercapacitor)

Limited to what sizes are available

Will likely have stack units in an array to get desired capacitance

At a common retailer, the largest supercapacitor is rated at 160V/5.8F

Stacking these in series to reach 2.4 kV
o Will require 15 units
o Reducing the capacitance to 0.3867 F.
o This is exceeds the desired minimum of 0.2315 F.

At a cost of $934.82 each, the total investment in supercapacitors would be
$14,022.30.

Again, the 1 MW grid-ties inverter would be in the range of —$300,000.



15 1 Cost considerations (Summary)

The most expensive case is the flywheel UPS/Inverter

The second most expensive is the Supercapacitor/Inverter

The most cost effective option seems to be the synchronous condenser
based flywheel option.

Other considerations
° For more degrees of freedom in controls, the supercapacitor/inverter option
is more ideal
o The inverter can actively control the bus voltage during a fault

° The synchronous condenser is incapable of controlling active power
o This may result in very poor voltage quality during fault ride-through



16 1 Storage: Active/Standby Modes

Active Mode
o Discharge storage
o Activates when rms bus voltage dips by some predefined
percentage

o Hysteresis band used to avoid excessive switching between
modes

Standby Mode
o Charge storage
o Complementary to active mode
o Gradually charge storage at some predefined rate to avoid
overload of source inverter
O Inverter acts as rectifier to gradually charge supercapacitor
O Starter motor gradually accelerates synchronous condenser to its nominal speed



Storage: Active/Standby Modes
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18 Storage: Active/Standby Modes (Flywheel)
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19 Simulation Results

Single ideal dc energy source coupled to ac system through
3-phase inverter with neutral connection.

380 V bus voltage managed through closed loop pwm

The fault is assumed to be 3LG.

The reason for this is that this is the most difficult fault to
clear
Only 1/3 of the storage is available to energize each phase
SLG faults are also easier to detect using zero-sequence
overcurrent protection, which will still be available in inverter-
based systems with appropriate grounding.



20 
1 Simulation Results
(Supercapacitor Backup)

Storage modes
o 0 — standby (charging)
O 1 = active (discharge)

Pros
o Designated primary breaker clears fault successfully
o Voltage waveform maintained with minimal distortion dur
fault

Cons
O Additional auxiliary Inverter for storage will exceed cost of
original source inverter due to drastically increased current
requirements
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21 1Simulation Results
(Supercapacitor Backup)

Breaker 3 clears fault in about 0.4s
o Oscillating fault current as backup storage
switching between active and standby mode

Mode controller needs improvement.
o Switches between active and standby mode
several time during fault.

• Ideally the controller would only switch
twice
O To active upon fault
O To standby upon fault clearance

Supercapacitor voltage
o Drops during active mode (rapid)
• Increases during standby mode (gradual)
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22 1 Simulation Results
(Synchronous Condenser)

Storage modes
O 0 = standby (charging)
O 1 = active (discharge)

Pros
o Designated primary breaker clears fault successfully
o No additional power electronics interface required (cost)

Cons
o Voltage waveform highly distorted during fault
O maintenance cost for synchronous condenser.

Still magnitudes lower than the cost for the supercapacitor's fixed cost over
the lifetime of operation

br
ea

ke
r 
3
 c
ur

re
nt

 (
A
)
 

cu
o

2000

-2000  
0

2.4 kV 0

Synchronous
Condenser

bkri
 e--1-=

bkr

bkr 2 bkr4 Toad 3

(\, ly\ 1:1 rA

\IJY. .}1A
)t)

0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 4

time(seconds)

  0
0.3 0.35 0 4o6d load 511111' 0.05 0.1 0.15 0.2 0.25



23 1Simulation Results
(Synchronous Condenser)

Breaker 3 clears fault in about 0.2s
o Oscillating. fault current as backup
storage switching between active and
standby mode

Mode controller needs
improvement.
o For synchronous condenser active
power is not controllable
0 Improvement is more problematic than for
supercapacitor case

Rotor speed
o Drops during active mode (rapid)
oIncreases during standby mode
(gradual)
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I
24 vonclusions/Future Work
Conclusions
O Both flywheel and supercapacitor storage provide sufficient energy to the clear
fault

o Clearance times were relatively close.

o The flywheel case was twice as fast, but a generalization cannot currently be made about
this phenomena

o The synchronous condenser flywheel is lower cost

o The supercapacitor/inverter provides better voltage quality+

Future Work
o Logic for switching between active and standby modes need drastic improvement for both
cases

O LG, LL, and LLG faults need to be further investigated
o Most faults are asymmetric
o Control schemes may need to be altered for these cases
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