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mesh the streamer propagation starts at nearly the same time;
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= EXxcited states have probability to radiate (l . .
a photon based on transition-specific  © . Unresol\{ed mesh sizes greater than A, r.esult Ip
Einstein-A coefficients, quench via A substantive changes in (2D) .streamer evolutlpn. The
collision (assumed P,. . = %) with S 1 | | [ rgsults_ shown are a representative §ubset of multlple_ runs
packground neutrals, qu, I Some coses oLt W with different RNG seeds. Depending on the quantity of
auto-dissociate or auto-ionize with state- Modeled energy level and transition diagram for iInterest this numerical error may or may not be important.
specific rate atomic O (°D° transitions omitted for clarity). Solid blue = More resolved meshes result in increased e density In

lines represent radiative decay in which simulation
photons are generated. Red dotted lines represent

= Photons are modeled as discrete decay in which a simulation photon is not generated.
particles that move and stOChasticaIIy Green dashed lines are auto-ionizing states.
collide through a simulation timestep just
like all other particles

the streamer channel in “steady state”

= Streamer velocity seems to increase with smaller
elements that better resolving the Debye length.

= Both the increased streamer velocity and higher e-
density imply a higher net ionization rate, a,and thus E/n,
for the more resolved mesh. However, near the streamer
tip, electric field gradients on the scale of the streamer
radius are reasonably resolved (10's-1000’s of elements)

Geometry, Plasma Seed, and Mesh

= 2D “knife-edge’-to-plane with a 2.5mm air for all mesh sizes. Therefore the difference in evolution
filled (620 Torr) gap E does not appear to be driven by error in the large-scale
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® Use constant “fine” mesh in inner region where § across domain y eleCtnC fleld around the Streamer tlp InStead |t IS Ilkely
streamer is expected to grow. Plasma the error in resolving the small-scale density features and
° Inner region “fine” mesh sizes based on  seed | the resultant smoothing of the field in the coarser meshes

estimate for Debye length, A,=0.16um (n =102 \ : o5 kValg(())dGS V) S _ _
#/m3and T, = 0.5 eV) (12 ’ m) © = Needs further study to determine whether the numerical

*  Chose inner-region Ax/A, = {100, 20, 3}
= |nitialize seed plasma near the anode

error is driven by heating in the streamer channel (where
the Debye length is smallest) or the avalanche region

[ “fine” J ~1.05x mesh growth away from

mesh , Inner region i ) .
knife-edge: C.% upstream of the streamer tip (where field gradients are
 T.,=T =11,605K (1eV)andn, =108 m3 § Cathode (ground) largest and fine-scale features first appear)

* 100 um (radius) sphere located at tip of the \ = We have yet to show convergence! Must run at several
anode knife-edge ——————

600 pm 2400 um smaller mesh sizes with Ax/A, <1

°* Apply 12.5 kV anode voltage (sufficiently over-
volted to allow rapid streamer evolution)
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