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TLA is a popular temporal logic for writing
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tems. However, TLA lacks higher-order features
useful for specifying modern software written
in higher-order programming languages. We use
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mantics for TLA in terms of the actions of a
group of time dilations, or “stutters,” and an
extension by a monoid incorporating delays, or
“falters.” Via the geometric morphism of the as-
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1 Introduction

The Temporal Logic of Actions (TLA) is a
temporal logic commonly used for spec-
ifying digital computer systems [11, 13].
TLA formulae are linear temporal prop-
erties invariant under “stuttering.” Stutter-
ing invariant specifications written as TLA
formulae are easily composed, using noth-
ing more than conjunction, with no im-
plicit assumptions about synchronization.
Stuttering invariance also leads to a sim-
ple but powerful notion of “refinement,”
that is, showing that a detailed specifica-
tion implements an abstract one.

In [11] Lamport presents TLA as a first-
order logic, but, in specifications, higher-
order features are often desirable. For ex-
ample, one would often like to prove a rule
of inference that works over all proposi-
tions or all predicates. Lamport must in-
troduce special syntax (e.g., for fairness)
where in a higher-order context these lan-
guage features could be replaced with sim-
ple functions on propositions. Moreover,
programmers today often work in higher-
order programming languages, and the
powerful abstraction features in these lan-
guages (e.g., a generalized “map” func-
tion) are not easily expressed in TLA spec-




ifications.

As a step towards the goal of defining
a higher-order TLA, we present a model
in which it could be interpreted. In stan-
dard linear temporal logics, which do not
feature stuttering invariance, higher-order
features can be modeled in the so-called
“Topos of Trees” (i.e., presheafs over w) [5,
15]. Another impressive line of work on
“Temporal Types” takes a topos theoretic
approach based on translation invariant
sheaves (using the additive structure of R)
[16]. Unfortunately, these models cannot
capture TLA’s stuttering invariance.

Our categorical model of higher-order
TLA meets several desiderata, motivated

by the observations above:
1. it should provide a model of higher-

order classical S4 (TLA is a special case
of this modal logic);

2. it should have a “temporal” interpre-
tation which accounts for stuttering

invariance;

3. it should correspond with an equiv-
alent notion of validity, in the first-
order subset, to the standard seman-
tics of TLA.

We believe our model to be the first that
is suitable for a higher-order TLA. It is
constructed as follows. First, we switch
perspective, from the standard discrete-
time semantics of TLA to an alterna-
tive real-time semantics found in the lit-
erature [9] and reviewed in Section 2.
Then, recalling that models for higher-
order modal logic can be generated by geo-
metric morphisms between topoi (Section

3), we construct our model by recasting
the real-valued semantics by way of such
a geometric morphism (Section 4). Our key
insight was to consider stutterings as a
group, leading to a generalization of stut-
tering, which we call “faltering.”

2 The Temporal Logic of Action

Like Pnueli’s Linear Temporal
(LTL) [14],
of linear time: formulae classify sets of

Logic
TLA adopts the perspective

(linear) infinite traces of a system evolv-
ing through time. Also like LTL, TLA
has temporal modalities “always” (O)
and “eventually” (¢). However, unlike
LTL, TLA has no “next” (o) modality.
Instead, TLA has a notion of “actions”
that describe instantaneous changes in
the system state, but which also allow
“stuttering steps” in which the trace
evolves in time but the state remains un-
changed. Thus, unlike LTL, TLA formulae
are always “stuttering invariant,” that is,
they cannot differentiate traces by how
long they stutter.

Syntactically, TLA has two classes of for-
mulae (Figure 1): actions, which denote in-
stantaneous changes to the system state,
and temporal formulae, which are predi-
cates on traces.

Actions are normal first-order logic for-
mulae except in the handling of terms.
Variables appearing in terms can be “rigid”
(written in italics), indicating that they do
not change over time, or “flexible” (writ-
ten in bold face), indicating that they may.




EcTerms =z |x|x' | f(E1,...,Epn)

A € Actions ::= R(Eq, ...

,En)‘E1:E2 ‘VZE.A|A1/\A2‘—\A

2. T & ~Va.—T
Ix.P £ —-Vx.—-P

P € Propositions ::= OP | =P | PL A Py | O[A]<xy...xn> | VZ.P |VX.P Ty VT2 £ ~(Ty A Th)

T € Formulae ::= A | P

T1:>T2é—|T1\/T2

Figure 1: Syntax and Syntactic Sugar of TLA

Flexible variables may appear primed (x’)
or unprimed (x) denoting the variable’s
value in the next or current state, respec-
tively.

Temporal formulae are comprised of the
usual propositional connectives and tem-
poral quantifiers, along with a special op-
erator (O[4],, where Aisan actionand v isa
function on the system state). Intuitively,
the formula O[A4], means “it is always the
case that either the action A happens or
v does not change.” TLA is also equipped
with ordinary (first-order) quantifiers over
rigid variables Vz.P as well as “temporal”
quantifiers over flexible variables vx.P.

Lamport’s semantics for TLA (Figure 2)
interprets temporal formulae using a dis-
crete model of time. Traces are modeled
as functions from natural numbers to a
“state,” where states are assignments of
values for each flexible variable.

Lamport’s semantics are unusual in the
handling of the flexible quantifier (V).
Naively, flexible quantification would be

relation such that for every p € SN and n € N we

have p ~ p' when p’ is given by

when m <n

when m > n.

Unfortunately, in this semantics, the
definition of flexible quantification must
explicitly “bake in” stuttering invariance,
and this makes flexible quantification be-
have quite differently from the ordinary
semantics of modal logic.

Proposition 1 (Stuttering Equivalence of TLA).
For any P, 0, p, p’ such that p ~ p’

O,pE=Piff 0,0 = P.

Kaminski and Yariv [9] proposed an
alternative semantics for TLA based on
a continuous notion of time. In this
setting traces are interpreted as “non-
Zeno” functions from the non-negative

real numbers.

Definition 2 (Non-Zeno function). A non-Zeno

function over a set S is a function f from non-

0,p =Vx.P iff for every d € DN 6, p(x > d) = P negative real numbers to S such that

Definition 1 (Discrete Stuttering Equivalence).
Given any set S, the stuttering equivalence rela-

tion ~ on behaviours SN is the least equivalence

1. for every ¢ € R>( there exists a positive e
such that for all ¢ where t < t/ <t + € we
have f(t) = f(t') and




9,0’70', ):Al/\A2
0,0,0' E—-A
9,0’,0', ):El :E2

iff 0,0,0 £ A

iff [E1](0,0,0") = [E2](0,0,0")

iff (,0,0" = A1) and (0,0,0" = Aj)

[[17]] (97 o, UI) - 0(56)
[x](8,0,0") = o(x)

iff for every v € D (Wz — v),0,0' = A [xX'](0,0,0") =o' (x)
iff R(R)([E1](0,0,0"),...,[E.](0,0,0"))

aEn)]] (97 g, OJ) = f(f)([[El]](97 g, U/)v SRR [[El]] (07 g, OJ))

iff for each n € N either 0, p[n], pin + 1] = A or Vi € [1,m].p[n](x;)

0,0,0' V. A
0,0,0' = R(E,...,Ey)
[F(Br,...
O,p= P AP iff 0,p = Py and 6,p = P,
6,p = P iff 6, p b P
0,p =0P iff for every n € N 6, p[n,...] = P
0,p F BlAl<xy,...xm>
6,p |EVz.P iff for every v e D (W z — v),p = P
0,p =Vx.P

iff for every d € DN and p' ~ p,0,p' W (x — d) = P

Figure 2: Discrete Time Semantics of TLA

2. there is no bounded increasing sequence

to,t1,t2,... such that forall i, f(¢;) #
f(tit1).

These two conditions ensure that a non-
Zeno function does not change too quickly:
the first condition guarantees that each
state is held for positive time, while the
second ensures that only a finite number
of states are visited in any finite length of
time. We (ab)use the notation S®" to refer
to the set of non-Zeno functions over S.

Stuttering invariance of a set of such
non-Zeno functions is modeled as clo-
sure under pre-composition by home-
omorphisms on Rso (with the standard
topology). The alternative continuous se-
mantics (Figure 3) yields exactly the same
notion of truth as Lamport’s original se-
mantics, while avoiding the need to “bake

in” stuttering invariance in its definitions.
This
many aspects of TLA. It explains stutter-

continuous semantics clarifies
ing invariance as invariance under time
dilation. Furthermore, it presents rigid
and flexible variables uniformly, allowing
them to be viewed as coming from two
different types. Categorically, this means
rigid and flexible quantification should
correspond to quantification over different

objects.

3 Semantics of Higher Order Logic

Higher-order Logic (HOL) (see [2]) com-
bines a (possibly intuitionistic) logic with
the simply-typed A-calculus. It may be
viewed as an extension to multi-sorted
first-order logic that adds features for
quantifying over function types and




next(r,S) £ 0

when Vt € R>o,Vz € S,7(0)(z) = 7(t)(x)

next(r,S) = sup{r | V0 < k < r,Vx € S,7(0)(x) = 7(k)(z)} otherwise

97 T ':[R D[A]xly---,xn

iff r=0o0r0,7(0),7(r) = A

where r = next(r, {x;]0 < i < n})

iff for every v € DX we have 6, (= (1(r),x = v(r) Er T

0,7 ERT1 N T iff 0,7 =r T1 and 0,7 =R T
0,7 Er T iff 0,7 e T
0,7 Er V2. T iff for every v € D we have (6, — v), 7 Er T
9, T ':[R’ vx. T
0,7 =g OT iff for every k € R>g such that 6, 7[k..] =r T
Figure 3: Continuous-time Semantics of TLA
propositions.

Modal variants of higher-order logic
are usually formed simply by adding ad-
ditional modal operators exactly as one
would in a propositional logic.

There are many semantics for higher-
order logic. In the “standard” seman-
tics, types are interpreted as sets, func-
tion types are interpreted as the set of all
functions between their constituents, and
propositions are interpreted as booleans.
This model is incomplete, however.

A more general class of model is found
in topoi.

Definition 3. A topos is a cartesion closed cat-
egory & possesing all finite limits and a subob-
ject classifier, i.e. an object €2 and a monic arrow

true : 1 — Q such that V monic m : S — B
s — 41
by, 0 B — Q such that Im lt,ue is a

B ---=- > Q
pullback.

In the naive topos semantics, types (also,

contexts) are interpreted as objects, terms
are interpreted as morphisms, function
types are interpreted by way of the inner
hom, and the proposition type is inter-
preted as the subobject classifier.
However, this topos semantics is still
too strong - it justifies additional laws
which are not derivable from the natural
deduction rules in Figure 4. In particular,
the topos semantics imposes upon higher-
order logic the additional property of ex-
tensionality of entailment (see [4] 5.3.7)

I'PQ:0— Prop
Fz:o|O,Prt Qx T e:o |60z Px

Iy | ©OFP —o—Prop Q

A class of categorical models for higher-
order logic with more examples is obtained
by weakening the structure involved in the
subobject classifier.

Definition 4 (Hyperdoctrine). Let P : C? —

HeyAlg a functor from a cartesion closed C into




the category of Heyting algbras such that:

1. VX,Y : ObjC there are monotone EIff,Vf/( :
Hompreord(P(X xY'), P(Y)) such that for 7 :
X xY — Y the projection K& - P(m) 4 Vi
and satisfying the Beck-Chevalley condition

P(X x V') )b x » v)
Vi:Y =Y/ Vif{/l Vigl
PY/ ——— PY

Pf
commutes as does the similar 35¢ diagram;

2. (Forget - P) : C°? — Set is representable.

Hyperdoctrines provide a setting for a
sound and complete semantics for HOL
by modeling contexts using the under-
lying cartesian closed category structure,
with the Heyting algebra of propositions
over those contexts given by the functor,
and the quantifiers induced by the ad-
joints.! Moreover, by replacing the cate-
gory of Heyting algebras with the cate-
gory of Boolean algebras, we gain a notion
of “classical hyperdoctrine,” which pro-
vides a sound and complete semantics for
classical higher-order logic. Finally, using
an even stronger category of “modal alge-
bras” yields a model of S4 modal higher-
order logic.

Definition 5. A modal algebra is a pair (A,0) :
Obj(MAIlg) where A is a Heyting algebra and O
is a left exact comonad on A.

A modal algebra morphism [ : (A,0) —
(B,0’) is a morphism of the underlying Heyting
algebras which commutes with the modalities in
the sense that f-O=0'- f.

'Completeness, as is often the case, holds for the class

of models by constructing an appropriate syntactic object

initial in the category of hyperdoctrines as in [10]

Definition 6 (Modal Hyperdoctrine). Let P :
C? — MAIlg be a functor from a small cartesian
closed category C into the category of Modal al-
ghbras MAlg otherwise satisfying the axioms of a

hyperdoctrine.

The hyperdoctrine semantics fully gen-
eralizes the topos semantics. As every
topos T induces a (intuitionistic) hyper-
doctrine

(T, Homp(—,)) (1)

However, these are not the only hyper-
doctrines of interest. Specifically, the only
fact about © in equation 1 required for that
the resulting structure be a (intuitionistic)
hyperdoctrine is that it forms an internal
complete Heyting algebra in 7.

Given any topos £ and internal com-
plete Heyting algebra H in &, there is
a natural way of equipping Homg(—, H)
with a Heyting algebra structure so that
(€,Homg(—, H)) forms a hyperdoctrine.

If H is an internal complete boolean or
modal algebra in 7', then the resulting hy-
perdoctrine will be classical or modal, re-
spectively [1].

In this topos-theoretic setting, we can
apply a simple recipe for constructing
a topos together with internal complete
modal algebras. Recall

Definition 7. Let £, F be topoi. A geometric mor-
fi
—
phism f : £ — F is an adjunction & T F
f*
such that the left adjoint f*, known as the in-

verse image, preserves finite limits. If every object
X : Obj(€) is a subquotient of an object of the
inverse image f*, so that there exists Y : Obj(F)
and diagram f*(Y) «< S — X, then f is localic




Geometric morphisms are a source of in-
ternal complete Heyting algebras.

Proposition 2. Let f : £ — F a geometric mor-
phism. Then f,({2¢) is a complete Heyting algebra

internal to F

Geometric morphisms are also a source
of adjoint pairs of maps of complete Heyt-
ing algebras.

Lemma 1 ([8] C1.3). In any topos &, the subob-
ject classifier Q¢ is the initial complete Heyting
algebra object. That is, for all complete Heyting
algebras H internal to &£, there is a unique map
of complete Heyting algebras i : Q¢ — H. More-
over, the right adjoint of 7 is the classifying map

of the top element Ty :1 — H.

This adjoint pair of maps defines a useful
comonad.

Lemma 2 ([1]). Given a complete Heyting algebra
H internal to topos &, let ¢ = 7 the canonical
adjunction 7 : Qg & H : 7. The composite io 7 is

an S4 modality on H

If we have two topoi, £ and F, and a geo-
metric morphism f: & — F then the image
of the subobject classifier of £ in F is an
internal complete modal algebra in 7.

An illustrative example is given by a
topos-theoretic view of Kripke semantics.
Let K be a preorder, interpreted as a col-
lection of “possible worlds,” together with
an accessibility relation. By |K| we mean
the discrete category with the same under-
lying objects as K.

The inclusion |K| — K induces a geo-
metric morphism f: Psh(|K|) — Psh(K).

Lemma 3 ([7], prop. 3.1). Let f : D — C be a func-
tor of small categories. If f is faithful, then the
induced geometric morphism Psh(D) — Psh(C)

is localic.

Thus we obtain a modal hyperdoc-
trine on (Psh(K), Hompgpx)(—, f«(Qpsn(k))))-
In particular, as |K| is a groupoid, & =
Psh(|K]) is a Boolean topos, so f,(Q¢) is not
only a complete Heyting algebra internal to
F = Psh(K), it is an internal Boolean alge-
bra! The resulting logic is classical, even
though Psh(K) is very much not a boolean
topos in general (it is, instead, a Kripke
model of an intuitionistic logic). The in-
ternal logic of this modal hyperdoctrine is,
in the first-order fragment, exactly what
we would get from the Kripke semantics
over K. And thus we have a simple pre-
sentation of a higher-order version of that
semantics.

4 The Model

Now we are ready to construct a candidate
model for a Higher-order TLA.

Why not simply use the topos-theoretic
Kripke semantics, described in Section 3,
applied to the discrete semantics? This ap-
proach will fail because TLA’s discrete se-
mantics is not an ordinary Kripke seman-
tics, since flexible quantification is not
ordinary Kripke quantification (see Sec-
tion 2). Even the continuous semantics is
not adequately captured in the ordinary,
preorder-based, Kripke view since Kripke
does not account for stuttering.

We must build a model that includes




stuttering invariance from the get go. Pre-
orders are inadequate to this task. Luck-
ily, the geometric morphism construc-
tion described in Section 3 is not spe-
cific to Kripke’s inclusion of a discrete set
into a pre-order. Any faithful functor be-
tween small categories whose domain is
a groupoid induces a model of classical
higher-order modal logic.

Our model is enabled by the following
elementry observation: in the continuous
semantics, stuttering invariance is pre-
cisely closure under the action of a group,
the group of stutters.

Definition 8 (Stutter). A stutter is a continuous
function R>g — R>o with continuous inverse.

By S we denote the group of stutters
S =({f:Rs0 = Rxo | f is a stutter}, -idr,,)

We will adopt the convention of viewing
any monoid G as the category BG with one
object and one monoid’s worth of mor-
phisms. This way the category of G-Sets
and G-Set morphisms for a group G (more
generally, for any monoid) is just Psh(BG).

Non-Zeno functions on a set form a
S-set where the action of S is pre-
composition. Stuttering invariant subsets
of that set are then, exactly, sub S-sets.
As such, the category of S-sets (Psh(BS))
seems to be closely connected to our prob-
lem. Psh(BS) is a topos, and, since S is
a group and BS therefore a groupoid, a
boolean one at that, and, so, already a
tempting target for the semantics of a
higher-order TLA. We already know this

will not work on its own though, as a topos
is not enough to interpret the modalities.

The most important modality for our
purposes is O. A behavior (viewed as a
non-Zeno function) is “always” a mem-
ber of some set of behaviors if, given any
initial delay in which the behavior is not
observed, the remainder is in that set.
Thus, while stuttering invariance has to do
with closure under dilation of time by bi-
continuous functions, O has to do with the
translation of time.

To that end, we introduce a generaliza-
tion of stutters, which we call “falters,”
which can include translation as well as di-
lation.

Definition 9. A falter is a monotone function f :
R>0 — R>o such that the function z — f(z) —

f(0) is a stutter.

By F we denote the monoid of falters (under

function composition).

There is a natural morphism of monoids
.+ 8§ — F given by inclusion, inducing
BS — BF. As men-
tioned in Section 3, such a faithful functor

a faithful functor . :

induces a localic geometric morphism on
the associated presheaf categories /* H i, :
Psh(BS) < Psh(BF). Our proposed model
for a higher-order TLA is the hyperdoc-
trine induced by this geometric morphism.

We will now elaborate some details of
this model. We consider F-sets to be
“temporal types” as these are the types
about which we can talk in our model. The
type of flexible variables over some base




set are computed according to the functor

Flex : Set — Psh(BF)
Flex(S) = ({f : R>o — S| f non zeno},-).

While the type of rigid variables over a base
set is computed according to the functor

Rigid : Set — Psh(BF)
Rigid(S) = (S, ((__, z) — x)).

There is a natural inclusion morphism
from Rigid — Flex, which is (for every
set) monic. However, Rigid(S) is not the
only subobject of Flex(S). Any stuttering-
and translation-closed subset of behav-
iors will be interpretable as a temporal set.
Of course, these are not the only tempo-
ral types: the inner hom between types
of flexible variables, for instance, corre-
sponds to temporal processes rather than
flexible variables over functions of the un-
derlying sets.

In Section 3 we reviewed the fact that a
modal hyperdoctrine may be represented
by applying the inverse image part of the
geometric morphism to the subobject clas-
sifier in Psh(BS). As S is a group, it has only
two ideals, ¢ and S. Thus, Qp,ss) is the set
2 with the trivial S-action.

As presheaf categories have all
(co)limits, the inverse image part of
the geometric morphism may be com-
puted as a right Kan extension. As
our categories BS and BF have sin-
gleton objects, this can be computed
pointwise. Given F : Set®® we compute
lim (05 le S Bs & Set), which amounts
to equalizing away the stutter action

[I5 7 F(es) —— IIzF(es) —— IlsxrF(es) -

On Psh(BS)’s subobject classifier, this is

Prop £ 1,(Qpsn(ss))
={p: F—=2|YVmeS,neF,pn)=pnm)}

, (,p) = (7" = p(n - n)))
2 (P(Rso), (n,0) = im~!(n)(0))

Consequently (and pleasingly), in our
model, a proposition corresponds to the set
of times when that proposition is true.

All the usual connectives coming from
the boolean algebra structure are com-
puted pointwise. All that remains is to
compute the modal structure. The sub-
object classifier in Psh(BF) is the col-
lection of falter ideals Qpg,er = {I C
F|Vi € IVf € F.a- f € I}, but these are
just all upward-closed subsets of R>, so
Qpsuer) = (Pr(Rx0), (n,0) = im™(n)(0)). As
subobject classifier in Psh(BF), Qpsuir) 1S
initial in complete Heyting algebras inter-
nal to F, so the obvious equivariant in-
clusion ig : Qpger) = (Qpsnes)) IS €s-
sentially unique. The right adjoint =,
L (Qpsn(es)) = Qpsn(er), Which classifies 1 —
t(Qpaes)), 18, then, the upward closure
? (=) : P(R) — P4+(R). The adjunction O :=
ig o To : End(1.Qpg,ss)) provides a left exact
comonad on the complete internal Heyting
algebra 1. (Qpsns))-

The resulting modal structure is quite
natural - it reduces to ensuring that a
proposition holds at all future times.

O(—) : Prop — pgnF) Prop

0(S) ={r € Rso | V"' > r,r' € S}




As such, our categorical model is pre-
cisely a higher order generalization of the
continuous-time semantics presented in
Section 2.

Theorem 1. The
(Psh(BF),Hom(—, t.(Q8s))) admits a sound

modal  hyperdoctrine
interpretation of higher-order classical S4. More-
over, restricting to the first-order fragment, this
model corresponds to the model of the Temporal
Logic of Actions in Figure 3 and agrees for

validity with the standard semantics (Figure 2).

5 Conclusion

We have found a categorical setting in
which to model a higher-order version of
TLA, providing a way of assigning mean-
ing to statements in this logic. This a first
step towards a useful higher-order tem-
poral logic for digital systems. In particu-
lar, the model we have described will allow
us to formulate proof rules, and verify that
they are sound with respect to our model.
We imagine that other models for such a
proof theory may also be of interest.

Our model construction started by
switching from the discrete-time seman-
tics for TLA that was originally formulated
by Lamport to a real-time semantics. This
was essential, since stuttering invariance
does not correspond to closure under
a group action in the discrete case. In
Lamport’s semantics, stuttering forms a
monoid (at best) rather than a group, and
closure under the action of that monoid
fails to fully account for stuttering invari-

ance. Nonetheless, a categorical semantics

of higher-order TLA based on discrete-
time stuttering invariance remains an
intriguing challenge.

We plan to continue our work on a
higher-order TLA, with the goal of using
it as the basis of a proof assistant and tool
chain for practical engineering purposes.
Yet significant challenges remain, such as
developing the required syntax, proof the-
ory, and so on. Moreover, it remains to be
seen how extending TLA with higher-order
features can be put into useful practice.
A potential use case would be to specify
a variant of PlusCal [12], a programming
language that translates to TLA, extending
it with handy higher-order features such
as closures or objects.

Our goal in this paper was to find a
model satisfying our desiderata. It remains
to state what, exactly, “higher-order TLA”
is and to specify its class of models. In the
present paper we focused on giving an ac-
count of the temporal types, neglecting the
underlying non-temporal sets. A detailed
and generalized account of the categorical
properties of TLA’s action lifting construc-
tion will necessarily be needed in future
work. All that said, the particular form of
the model found is intriguing. Because the
underlying category of our hyperdoctrine
is a topos, and not just cartesion closed, it
has all finite limits. As such, it is a promis-
ing setting for developing an account of
specification composition using pullbacks
(3, 6].
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A Rules of Higher-order logic

T,S € Types:=...|T — S |Prop M,N,0 € Terms u=...|z|XNx:T).M|M N |(=)|Vr
M=>N2(=)MN “MAM= 1
V(z:T).M 2V¥r(\z : T).M) M AN 2VY(p:Prop).(M = N =p)=p
L 2 Y(p: Prop).p MV N 2Y(p:Prop).(M = p)= (N =p)=p

T 2Y(p: Prop).p=p Iz : T).M 2 V(p: Prop).(V(z : T).M = p) =p

'rM=N:T TFM=N TFN=0O (z:T)el

TEN=M:T '-M=0 F'Fz=z:T I'-Vy =V : (T — Prop) — Prop
I'-Mi=My:S—T I'Ny=Nsy: S 'e: THFM=N:S
I'My Ny =My No: T TFXz:T)M=Xx:T).N:T—=S

Pa:T+-M=M:S I'-N=N:T T,z2:T-FMx=Nzx:S5

' (\z:T).M) N=M[N/z]:S rFM=N:T—S 'k (=)= (=):Prop

rierwf TI'tFM=M:Prop MecO ' et+wf

r| 0+ wf rie,Mt+wf I'|®F M true

I'|©F M true 'M=N:Prop I' ©F M = N true 'O+ M true I'|©,MF N true

' ©F N true ' ©F N true rrer-M=N

I'|©FYr M true 'FN=N:T T'TFM=M:T — Prop rierwf T,z:T|O©F M x true

' ©+F M N true ' ©FYr M true

Figure 4: Intuitionistic Higher-order Logic
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