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1 Introduction

The Temporal Logic of Actions (TLA) is a

temporal logic commonly used for spec-

ifying digital computer systems [11, 13].

TLA formulae are linear temporal prop-

erties invariant under "stuttering." Stutter-

ing invariant specifications written as TLA

formulae are easily composed, using noth-

ing more than conjunction, with no im-

plicit assumptions about synchronization.

Stuttering invariance also leads to a sim-

ple but powerful notion of "refinement,"

that is, showing that a detailed specifica-

tion implements an abstract one.

In [11] Lamport presents TLA as a first-

order logic, but, in specifications, higher-

order features are often desirable. For ex-

ample, one would often like to prove a rule

of inference that works over all proposi-

tions or all predicates. Lamport must in-

troduce special syntax (e.g., for fairness)

where in a higher-order context these lan-

guage features could be replaced with sim-

ple functions on propositions. Moreover,

programmers today often work in higher-

order programming languages, and the

powerful abstraction features in these lan-

guages (e.g., a generalized "map" func-

tion) are not easily expressed in TLA spec-
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ifications.

As a step towards the goal of defining

a higher-order TLA, we present a model

in which it could be interpreted. In stan-

dard linear temporal logics, which do not

feature stuttering invariance, higher-order

features can be modeled in the so-called

"Topos of Trees" (i.e., presheafs over w) [5,

15]. Another impressive line of work on

"Temporal Types" takes a topos theoretic

approach based on translation invariant

sheaves (using the additive structure of OR)

[16]. Unfortunately, these models cannot

capture TLA's stuttering invariance.

Our categorical model of higher-order

TLA meets several desiderata, motivated

by the observations above:
1. it should provide a model of higher-

order classical S4 (TLA is a special case

of this modal logic);

2. it should have a "temporal" interpre-

tation which accounts for stuttering

invariance;

3. it should correspond with an equiv-

alent notion of validity, in the first-

order subset, to the standard seman-

tics of TLA.

We believe our model to be the first that

is suitable for a higher-order TLA. It is

constructed as follows. First, we switch

perspective, from the standard discrete-

time semantics of TLA to an alterna-

tive real-time semantics found in the lit-

erature [9] and reviewed in Section 2.

Then, recalling that models for higher-

order modal logic can be generated by geo-

metric morphisms between topoi (Section

3), we construct our model by recasting

the real-valued semantics by way of such

a geometric morphism (Section 4). Our key

insight was to consider stutterings as a

group, leading to a generalization of stut-

tering, which we call "faltering."

2 The Temporal Logic of Action

Like Pnueli's Linear Temporal Logic

(LTL) [14], TLA adopts the perspective

of linear time: formulae classify sets of

(linear) infinite traces of a system evolv-

ing through time. Also like LTL, TLA

has temporal modalities "always" (o)

and "eventually" (0). However, unlike

LTL, TLA has no "next" (o) modality.

Instead, TLA has a notion of "actions"

that describe instantaneous changes in

the system state, but which also allow

"stuttering steps" in which the trace

evolves in time but the state remains un-

changed. Thus, unlike LTL, TLA formulae

are always "stuttering invariant," that is,

they cannot differentiate traces by how

long they stutter.

Syntactically, TLA has two classes of for-

mulae (Figure 1): actions, which denote in-

stantaneous changes to the system state,

and temporal formulae, which are predi-

cates on traces.

Actions are normal first-order logic for-

mulae except in the handling of terms.

Variables appearing in terms can be "rigid"

(written in italics), indicating that they do

not change over time, or "flexible" (writ-

ten in bold face), indicating that they may.
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E E Terms ::= x x I xi I f(Ei, • • • , En)

P E Propositions ::= EP Pi A P2 E[A]<x1,...,xn>

T E Formulae ::= A P

]x.T A

A E Actions ::= R(Ei, • • • , En) I Ei = E2 I Vx.A A1 A A2 3x.P

Vx.P Vx.P Ti V T2 4' (Ti_ A T2)

T2 4 —T1 V T2

Figure 1: Syntax and Syntactic Sugar of TLA

Flexible variables may appear primed (x')

or unprimed (x) denoting the variable's

value in the next or current state, respec-

tively.

Temporal formulae are comprised of the

usual propositional connectives and tem-

poral quantifiers, along with a special op-

erator (111[4, where A is an action and v is a

function on the system state). Intuitively,

the formula 0[4 means "it is always the

case that either the action A happens or

v does not change." TLA is also equipped

with ordinary (first-order) quantifiers over

rigid variables Vx.P as well as "temporal"

quantifiers over flexible variables Vx.P.

Lamport's semantics for TLA (Figure 2)

interprets temporal formulae using a dis-

crete model of time. Traces are modeled

as functions from natural numbers to a

"state," where states are assignments of

values for each flexible variable.

Lamport's semantics are unusual in the

handling of the flexible quantifier (V).

Naïvely, flexible quantification would be

relation such that for every p E SN and n E fkl we

have p pl when pi is given by

d(m) = p(m)

d(m) = p(m — 1)

when m < n

when m > n.

Unfortunately, in this semantics, the

definition of flexible quantification must

explicitly "bake in" stuttering invariance,

and this makes flexible quantification be-

have quite differently from the ordinary

semantics of modal logic.

Proposition 1 (Stuttering Equivalence of TLA).

For any P, 0, p, p' such that p p'

0, P iff 0, P.

Kaminski and Yariv [9] proposed an

alternative semantics for TLA based on

a continuous notion of time. In this

setting traces are interpreted as "non-

Zeno" functions from the non-negative

real numbers.

Definition 2 (Non-Zeno function). A non-Zeno

function over a set S is a function f from non-

, p Vx.P iff for every d E \ , 0 , pW(x d) P negative real numbers to S such that

Definition 1 (Discrete Stuttering Equivalence).

Given any set S, the stuttering equivalence rela-

tion ti on behaviours S°̀ 1 is the least equivalence

1. for every t E IR>0 there exists a positive E

such that for all t' where t<e<t+E we

have f(t) = f (e) and
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iff 9 , Q, o-' Ai) and (0 , Gr, Ai)

iff , o A

iff [[Ei]](0,o-, o-') = [[E2]](0 , , o-')

[[x]](0 , o o-') = 0(x)

[[x]](0 , o cri) = Q(x)

iff for every v E D(B U x v) , o o-' H A [X]](0 , o cr') = (x)

iff R.(R)(11E111 (0 , o o-'), • • • , [[En1(0 al))

[Lf(Ei, • • . , En)11(0,o-,o-') = T(f)(TE11(0, o-, o-'), . . . ,11E1]](0, o-, o-'))

0, pH P1 A P2

, p

, p H OP

0, )9 [A]<x1,...,,cm>

0, p HVx.P

, p Vx.P

iff p Pi and 19, P2

iff , p P

iff for

iff for

iff for

iff for

every n E W B, p[n, . . .] H P

each n E Ehl either 0 , p[n] , p[n 1] A or Vi E [1, m] . p[n] (xi)

every v E (0 x p P

every d E DN and p' p, 0 , d (x d) P

Figure 2: Discrete Time Semantics of TLA

2. there is no bounded increasing sequence

to, tl, t2 , . . . such that forall i, f (ti)

f (4+1) •

These two conditions ensure that a non-

Zeno function does not change too quickly:

the first condition guarantees that each

state is held for positive time, while the

second ensures that only a finite number

of states are visited in any finite length of

time. We (ab)use the notation SR+ to refer

to the set of non-Zeno functions over S .

Stuttering invariance of a set of such

non-Zeno functions is modeled as clo-

sure under pre-composition by home-

omorphisms on OR>0 (with the standard

topology). The alternative continuous se-

mantics (Figure 3) yields exactly the same

notion of truth as Lamport's original se-

mantics, while avoiding the need to "bake

in" stuttering invariance in its definitions.

This continuous semantics clarifies

many aspects of TLA. It explains stutter-

ing invariance as invariance under time

dilation. Furthermore, it presents rigid

and flexible variables uniformly, allowing

them to be viewed as coming from two

different types. Categorically, this means

rigid and flexible quantification should

correspond to quantification over different

objects .

3 Semantics of Higher Order Logic

Higher-order Logic (HOL) (see [2]) com-

bines a (possibly intuitionistic) logic with

the simply-typed A-calculus. It may be

viewed as an extension to multi-sorted

first-order logic that adds features for

quantifying over function types and
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next( S)

next(r, S)

0, T Cl[A]Xi

0, T T1 A T2

T —T

0,T Vx.T

0, T Vx.T

0,T OT

,xn

0 when Vt E P>0,Vx E S , - (0)(x) = r(t)(x)

sup{r VO < k < r,Vx E S , (0)(x) = (k)(x)} otherwise

iff r = 0 or e , (0) , (r) A

where r = next(r, {xilO < i < n})

iff e, T HR T1 and 0 T HR T2

iff e, T T

iff for every v E 1, we have (0, x H v), T T

iff for every v E DR+ we have e, (x (r(r), x v(r))) T

iff for every k e [R>0 such that 0,r[k..] T

Figure 3: Continuous-time Semantics of TLA

propositions.

Modal variants of higher-order logic

are usually formed simply by adding ad-

ditional modal operators exactly as one

would in a propositional logic.

There are many semantics for higher-

order logic. In the "standard" seman-

tics, types are interpreted as sets, func-

tion types are interpreted as the set of all

functions between their constituents, and

propositions are interpreted as booleans.

This model is incomplete, however.

A more general class of model is found

in topoi.

Definition 3. A topos is a cartesion closed cat-

egory E possesing all finite limits and a subob-

ject classifier, i.e. an object Q and a monic arrow

true : 1 Q such that V monic m : S B

3!0,7, : B Q such that

pullback.

In the naïve topos semantics, types (also,

S

vm itrue is a

B   Q

contexts) are interpreted as objects, terms

are interpreted as morphisms, function

types are interpreted by way of the inner

hom, and the proposition type is inter-

preted as the subobject classifier.

However, this topos semantics is still

too strong - it justifies additional laws

which are not derivable from the natural

deduction rules in Figure 4. In particular,

the topos semantics imposes upon higher-

order logic the additional property of ex-

tensionality of entailment (see [4] 53.7)

F H P,Q : a —> Prop

P,x:Q I 0, Px Qx F,x : o- I 6, Qx Px

r I 8 P =o-->Prop Q

A class of categorical models for higher-

order logic with more examples is obtained

by weakening the structure involved in the

subobject classifier.

Definition 4 (Hyperdoctrine). Let P : Cop —>

HeyAlg a functor from a cartesion closed C into

5



the category of Heyting algbras such that:

1. vx, Y : ObjC there are monotone %(,4 :

HOMPreOrd (P(X x Y), P(Y)) such that for :

X x Y Y the projection POT)

and satisfying the Beck-Chevalley condition

P(X x Y')P(ici-xf)P(X x Y)

Definition 6 (Modal Hyperdoctrine). Let P :

Cop —> MAIg be a functor from a small cartesian

closed category C into the category of Modal al-

gbras MAIg otherwise satisfying the axioms of a

hyperdoctrine.

The hyperdoctrine semantics fully gen-
Vf : Y vx,t eralizes the topos semantics. As every

PY' PY topos T induces a (intuitionistic) hyper-
Pf

commutes as does the similar 3-;,C diagram; doctrine

2. (Forget • P) : Cop Set is representable.

Hyperdoctrines provide a setting for a

sound and complete semantics for HOL

by modeling contexts using the under-

lying cartesian closed category structure,

with the Heyting algebra of propositions

over those contexts given by the functor,

and the quantifiers induced by the ad-

joints.1 Moreover, by replacing the cate-

gory of Heyting algebras with the cate-

gory of Boolean algebras, we gain a notion

of "classical hyperdoctrine," which pro-

vides a sound and complete semantics for

classical higher-order logic. Finally, using

an even stronger category of "modal alge-

bras" yields a model of S4 modal higher-

order logic.

Definition 5. A modal algebra is a pair (A, 0) :

Obj(MAIg) where A is a Heyting algebra and 0

is a left exact comonad on A.

A modal algebra morphism f : (A, El) —>

(B , ) is a morphism of the underlying Heyting

algebras which commutes with the modalities in

the sense that f •❑= 01 • f .

1Completeness, as is often the case, holds for the class

of models by constructing an appropriate syntactic object

initial in the category of hyperdoctrines as in [10]

(T,HomT(—, C2)) (1)

However, these are not the only hyper-

doctrines of interest. Specifically, the only

fact about S2 in equation i required for that

the resulting structure be a (intuitionistic)

hyperdoctrine is that it forms an internal

complete Heyting algebra in T .

Given any topos E and internal com-

plete Heyting algebra H in E , there is

a natural way of equipping Homg(—, H)

with a Heyting algebra structure so that

(E, Home(—, H)) forms a hyperdoctrine.

If H is an internal complete boolean or

modal algebra in T , then the resulting hy-

perdoctrine will be classical or modal, re-

spectively [i].

In this topos-theoretic setting, we can

apply a simple recipe for constructing

a topos together with internal complete

modal algebras. Recall

Definition 7. Let E , .F be topoi. A geometric mor-
,

phism f : E .F is an adjunction E T T
< f„

such that the left adjoint f*, known as the in-

verse image, preserves finite limits. If every object

X : Obj (E) is a subquotient of an object of the

inverse image f*, so that there exists Y : Obj(T)

and diagram f*(Y) S X , then f is localic

6



Geometric morphisms are a source of in-

ternal complete Heyting algebras.

Proposition 2. Let f : E .F a geometric mor-

phism. Then f,(S2g) is a complete Heyting algebra

internal to T

Geometric morphisms are also a source

of adjoint pairs of maps of complete Heyt-

ing algebras.

Lemma 1 ([8] C1.3). In any topos E, the subob-

ject classifier Qe is the initial complete Heyting

algebra object. That is, for all complete Heyting

algebras H internal to E, there is a unique map

of complete Heyting algebras i : H. More-

over, the right adjoint of 7 is the classifying map

of the top element TH : 1 H.

This adjoint pair of maps defines a useful

comonad.

Lemma 2 ([1]). Given a complete Heyting algebra

H internal to topos E, let i 7 the canonical

adjunction i : Sig H : 7. The composite i o T is

an S4 modality on H

If we have two topoi, E and T, and a geo-

metric morphism f : E T then the image

of the subobject classifier of E in T is an

internal complete modal algebra in T.

An illustrative example is given by a

topos-theoretic view of Kripke semantics.

Let K be a preorder, interpreted as a col-

lection of "possible worlds," together with

an accessibility relation. By WI we mean

the discrete category with the same under-

lying objects as K .

The inclusion WI K induces a geo-

metric morphism f : Psh(1K1) Psh(K).

Lemma 3 ([7], prop. 3.1). Let f : D C be a func-

tor of small categories. If f is faithful, then the

induced geometric morphism Psh(D) Psh(C)

is localic.

Thus we obtain a modal hyperdoc-

trine on (Psh(K),Homp,h(K)(—,f*(0--psh(K)))•

In particular, as is a groupoid, E =

Psh(lK1) is a Boolean topos, so c(C2e) is not

only a complete Heyting algebra internal to

T = Psh(K), it is an internal Boolean alge-

bra! The resulting logic is classical, even

though Psh(K) is very much not a boolean

topos in general (it is, instead, a Kripke

model of an intuitionistic logic). The in-

ternal logic of this modal hyperdoctrine is,

in the first-order fragment, exactly what

we would get from the Kripke semantics

over K . And thus we have a simple pre-

sentation of a higher-order version of that

semantics.

4 The Model

Now we are ready to construct a candidate

model for a Higher-order TLA.

Why not simply use the topos-theoretic

Kripke semantics, described in Section 3,

applied to the discrete semantics? This ap-

proach will fail because TLA's discrete se-

mantics is not an ordinary Kripke seman-

tics, since flexible quantification is not

ordinary Kripke quantification (see Sec-

tion 2). Even the continuous semantics is

not adequately captured in the ordinary,

preorder-based, Kripke view since Kripke

does not account for stuttering.

We must build a model that includes
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stuttering invariance from the get go. Pre-

orders are inadequate to this task. Luck-

ily, the geometric morphism construc-

tion described in Section 3 is not spe-

cific to Kripke's inclusion of a discrete set

into a pre-order. Any faithful functor be-

tween small categories whose domain is

a groupoid induces a model of classical

higher-order modal logic.

Our model is enabled by the following

elementry observation: in the continuous

semantics, stuttering invariance is pre-

cisely closure under the action of a group,

the group of stutters.

Definition 8 (Stutter). A stutter is a continuous

function R>o R>o with continuous inverse.

By S we denote the group of stutters

S = ({f : DR>0 —> DR>0 1 f is a stutter}, .ic/R>0)

We will adopt the convention of viewing

any monoid G as the category BG with one

object and one monoid's worth of mor-

phisms. This way the category of G-Sets

and G-Set morphisms for a group G (more

generally, for any monoid) is just Psh(BG).

Non-Zeno functions on a set form a

S- set where the action of S is pre-

composition. Stuttering invariant subsets

of that set are then, exactly, sub S- sets.

As such, the category of S- sets (Psh(BS))

seems to be closely connected to our prob-

lem. Psh(BS) is a topos, and, since S is

a group and BS therefore a groupoid, a

boolean one at that, and, so, already a

tempting target for the semantics of a

higher-order TLA. We already know this

will not work on its own though, as a topos

is not enough to interpret the modalities.

The most important modality for our

purposes is III. A behavior (viewed as a

non-Zeno function) is "always" a mem-

ber of some set of behaviors if, given any

initial delay in which the behavior is not

observed, the remainder is in that set.

Thus, while stuttering invariance has to do

with closure under dilation of time by bi-

continuous functions, ID has to do with the

translation of time.

To that end, we introduce a generaliza-

tion of stutters, which we call "falters,"

which can include translation as well as di-

lation.

Definition 9. A falter is a monotone function f :

E>o —> [IR>o such that the function x i— f(x) —

f (0) is a stutter.

By .F we denote the monoid of falters (under

function composition).

There is a natural morphism of monoids

t : S .F given by inclusion, inducing

a faithful functor t : BS —> B.F. As men-

tioned in Section 3, such a faithful functor

induces a localic geometric morphism on

the associated presheaf categories t* H t, :

Psh(BS) 4 Psh(B.F). Our proposed model

for a higher-order TLA is the hyperdoc-

trine induced by this geometric morphism.

We will now elaborate some details of

this model. We consider 1-- sets to be

"temporal types" as these are the types

about which we can talk in our model. The

type of flexible variables over some base
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set are computed according to the functor

Flex : Set Psh(B.F)

Flex(S) = ({,f E>o S f non zeno},*).

While the type of rigid variables over a base

set is computed according to the functor

Rigid : Set —> Psh(B.F)

Rigid(S) = (S, (( ,x) x)).

There is a natural inclusion morphism

from Rigid Flex, which is (for every

set) monic. However, Rigid(S) is not the

only subobject of Flex(S). Any stuttering-

and translation-closed subset of behav-

iors will be interpretable as a temporal set.

Of course, these are not the only tempo-

ral types: the inner hom between types

of flexible variables, for instance, corre-

sponds to temporal processes rather than

flexible variables over functions of the un-

derlying sets.

In Section 3 we reviewed the fact that a

modal hyperdoctrine may be represented

by applying the inverse image part of the

geometric morphism to the subobject clas-

sifier in Psh(BS). As S is a group, it has only

two ideals, and S. Thus, C2Psh(BS) is the set

2 with the trivial S-action.

As presheaf categories have all

(co)limits, the inverse image part of

the geometric morphism may be com-

puted as a right Kan extension. As

our categories BS and B.F have sin-

gleton objects, this can be computed

pointwise. Given F : SetBs, we compute

lim (.s t 7r4s BS Set), which amounts

to equalizing away the stutter action

IL\ F(•s) > > FIT F(•s)  > nsx.F F(as) •

On Psh(BS)'s subobject classifier, this is

Prop A 1,*(CiPsh(13s))

= (fp : .F 2 Vm ES,nE .F,p(n) = p(nm)}

, (n,p) p(n • ni)))

(P(OR>o), (n, O) nil-1(n) (0))

Consequently (and pleasingly), in our

model, a proposition corresponds to the set

of times when that proposition is true.

All the usual connectives coming from

the boolean algebra structure are com-

puted pointwise. All that remains is to

compute the modal structure. The sub-

object classifier in Psh(B.F) is the col-

lection of falter ideals Qpsh(B.F) = c

Trdi E ld f E .F .i • f E I}, but these are

just all upward-closed subsets of P>o, so

QPsh(13,F) (PT(R>o), (n, 0) H inc1(n)(0)). As

subobject classifier in Psh(B.F), CiPsh(13.F) is

initial in complete Heyting algebras inter-

nal to .F , so the obvious equivariant in-

clusion iQ t*(C2Psh(BS)) is es-

sentially unique. The right adjoint :

40-1.Psh(Bs)) Psh(B.F)) which classifies

t*(CiPsh(Bs))) is, then, the upward closure

fi (—) : P(R) Pt(E). The adjunction o :=

o : End (49-13.sh(Bs)) provides a left exact

comonad on the complete internal Heyting

algebra 4(0\--Psh(13s)) •

The resulting modal structure is quite

natural - it reduces to ensuring that a

proposition holds at all future times.

: Prop —>Psh(B.F) Prop

D(S) = {r E DR>o Vr > r, r E S}
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As such, our categorical model is pre-

cisely a higher order generalization of the

continuous-time semantics presented in

Section 2.

Theorem 1. The modal hyperdoctrine

(Psh(BT), Hom(—, t,,(C/Bs))) admits a sound

interpretation of higher-order classical S4. More-

over, restricting to the first-order fragment, this

model corresponds to the model of the Temporal

Logic of Actions in Figure 3 and agrees for

validity with the standard semantics (Figure 2).

5 Conclusion

We have found a categorical setting in

which to model a higher-order version of

TLA, providing a way of assigning mean-

ing to statements in this logic. This a first

step towards a useful higher-order tem-

poral logic for digital systems. In particu-

lar, the model we have described will allow

us to formulate proof rules, and verify that

they are sound with respect to our model.

We imagine that other models for such a

proof theory may also be of interest.

Our model construction started by

switching from the discrete-time seman-

tics for TLA that was originally formulated

by Lamport to a real-time semantics. This

was essential, since stuttering invariance

does not correspond to closure under

a group action in the discrete case. In

Lamport's semantics, stuttering forms a

monoid (at best) rather than a group, and

closure under the action of that monoid

fails to fully account for stuttering invari-

ance. Nonetheless, a categorical semantics

of higher-order TLA based on discrete-

time stuttering invariance remains an

intriguing challenge.

We plan to continue our work on a

higher-order TLA, with the goal of using

it as the basis of a proof assistant and tool

chain for practical engineering purposes.

Yet significant challenges remain, such as

developing the required syntax, proof the-

ory, and so on. Moreover, it remains to be

seen how extending TLA with higher-order

features can be put into useful practice.

A potential use case would be to specify

a variant of PlusCal [12], a programming

language that translates to TLA, extending

it with handy higher-order features such

as closures or objects.

Our goal in this paper was to find a

model satisfying our desiderata. It remains

to state what, exactly, "higher-order TLA"

is and to specify its class of models. In the

present paper we focused on giving an ac-

count of the temporal types, neglecting the

underlying non-temporal sets. A detailed

and generalized account of the categorical

properties of TLA's action lifting construc-

tion will necessarily be needed in future

work. All that said, the particular form of

the model found is intriguing. Because the

underlying category of our hyperdoctrine

is a topos, and not just cartesion closed, it

has all finite limits. As such, it is a promis-

ing setting for developing an account of

specification composition using pullbacks

[3, 6].
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A Rules of Higher-order logic

T, S E Types ::= ... I T -> S I Prop M,N,OETerms ::= ... l x l A(x : T).M1M Nl()I VT

M-1\14 (-)M N

V (x : T).M ° V T(A(x : T).M)

14V(p: Prop).p

-,M 4 M 1

MAN °V (p : Prop). (M N p) p

M VN° V (p : Prop). (M p) (N p) p

T 4 V(p : Prop).p p 3(x : T).M ° V (p : Prop).(V(x : T).M p) p

FI-MN:T FI-MAT FI-1\70 (x:T)Er

F I- N M : T F I- M-=-0 F I- xx:T F I- VT VT : (T-* Prop) Prop

F I- M1 M2 : S T F I- N1 = N2 : S r, x : T I- M N : S

F I- M1 N1 -= M2 N2 : T rhA(x:T).M A(x : T). N : T --> S

F, x : TI- /14- M:S FF-NN:T r,x:TI-M x=N x:S

rh (A(x : T).M) N M[N 1 x] : S 1.‘ I- M N : T -> S r h (.) = () : Prop

rlOhwf

rlehwf FI-M=M: Prop M E 0 rlehwf

F 1 0,M I- wf r 1 0 I- M true

rle I-Mtrue FI-MN:Prop rle I-MNtrue Flel-Mtrue Fle,MI-Ntrue

Flel-Ntrue I' I 0 I- N true rlehit/N

rIehVT Mtrue PI - N _IV:T 1'1 - M 1 1 :T-> Prop rlehwf F,x:Tlel-Mxtrue

r 1 0 I- M N true rlel-VTM true

Figure 4: Intuitionistic Higher-order Logic
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