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Introduction & motivation.

• Modern power grids around the globe are
transitioning from radial to distributed.

• Most of Distributed Energy Resources (DERs)
utilize electronic interfaces to interact with the

grid.

• Recently, this interaction has not only been
focused on supplying maximum available

energy, but also on supporting the power grid

under abnormal conditions (evolution of IEEE
1547).

• Grid-forming inverters (GFMIs) are gaining
momentum as the penetration-level of DERs

increases and system inertia decreases

• GFMIs tend to better preserve grid stability
due to their intrinsic ability to balance loads
without the aid of coordination controls
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Introduction & motivation
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• Recently, a workshop related to GFMIs for low inertia power systems gathered
members of academia, researchers of national laboratories, utility engineers,
and representatives of inverter and protective relaying manufacturers.

• To date, almost all GFMI behavior and incident operational benefits have been
shown in simulation. More research into hardware demonstration is needed.

• While demonstration of GFMI in application environments is ideal, it is difficult

to tractable test hardware in a wide variety of operation conditions .

• Power Hardware-In-Loop (PHIL) is a flexible, high fidelity extension of
simulation results that are more tractable to implement for a wide variety of
operating conditions than a pure hardware testbed.
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PHIL brief overview.

• Advances in parallel

computing have allowed

the proliferation of state-of-

the-art real-time simulators

(RTS).

• RTS provide the means to

implement a systematic

process for testing a variety

of devices, including power

converters.

• Experiments were

performed in the PHIL

testbed located at the

Distributed Energy

Technologies Laboratory

(DETL) at Sandia National

Laboratories.
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Low inertia PHIL testbed for GFMIs models.

HIL Simulator Box
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• Simulation side:

• GFMI models under test.

• Two transmission lines with high X/R.

• Two 24 kW loads with their respective switches.

• Hardware side:

• Commercially available grid-following inverter (GFLI) connected to a

PV-simulator.
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Description of Simulation Models.
Generic GFMI model
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3-phase experimental PHIL setup and results.

GFLI connection and load change
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• Each GFMI model was simulated

separately, thus a comparison of the

dynamics can be made.

• Chronology of the simulation events.

1. Before t1, both switches are open

and the GFMI model supplies L1.

2. At t1, SW1 closes allowing the GFLI

to connect via PHIL.

3. At t2, SW2 closes and connects L2 to

the system.
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3-phase experimental PHIL setup and results.
More on load change dynamics (Voltage & Frequency)
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• Frequency curves follow the real power

dynamics due to the linear relationship.

• Abrupt transitions cause deviation from
the P-f droop characteristic.
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3-phase experimental PHIL setup and results.
Dynamics under a 3-phase fault.
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• The lower fault current
contribution from the DQ GFMI is

due to its intrinsic current

regulation scheme.

• The parameter Al reveals a current

difference of about 200 Arms
between the two fault current
contributions.

• This current difference must be
taken into account when designing
the protection scheme for this
system.

• The frequency plots illustrate how
the control scheme mandates the
behavior of the GFMIs during the

presence of a fault
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Single-phase experimental PHIL setup and results.
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• This experimental testbed is located at the Southwest Technology

Development Institute (SWTDI) at New Mexico State University. Master-

slave configuration in split-phase with a GFLI (2 kW)

• L1 and L2 are balanced loads (P=4.5kW, Q=lkvar).

• This system was replicated using the PHIL setup at SNL.

• L1 and L2 were simultaneously connected to the system as shown in both

figures
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Single-phase experimental PHIL setup and results.
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• The frequency spike is
similar in magnitude for
the commercial inverter
and the CERTS model, but
the response of the CERTS
is significantly higher.

• DQ model showed large
spikes in frequency and
voltage due to the slow
response imposed by two
control loops.

• In steady state the two
simulation models and the
commercial inverter

converge to the same
value.
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• A low inertia PHIL testbed was introduced to perform the different testing

scenarios for GFMIs.

• The dynamic behavior of two simulation models of grid-forming inverters

are evaluated in terms of transient and steady-state stability under abrupt
load changes and low impedance faults.

• Simulation results showed that a GFMI model with DQ current control
shows an intrinsic slower response of frequency and voltage regulation
when compared to the response of a CERTS GFMI model.

• Under fault scenarios, the DQ controlled GFMI performed better in terms
of limitation of fault current contribution due to its inherent current

control scheme.

• The single phase models were validated against a commercially available
inverter.

• In the single phase case validation, the PHIL results showed accurate
results in steady state, but further research and experiments are required
to validate the corresponding differences between experimental and PHIL
results during transients (inconsistencies in voltage and frequency spikes).
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