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Why microkinetic models?

• Microkinetic models are a collection of elementary reactions
describing a complex chemical phenomena

• Traditional kinetic models simplify the chemistry by making
assumptions

• Microkinetic models do not make a priori assumptions to simplify the
chemistry
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We have RMG for heterogeneous catalysis!
Our code is merged with the newest release of
RMG version 2.4.0:

Reaction Mechanism Generator

• developed for combustion (H, C, O)

• open source, Python based

• mature (-50+ graduate-student years of development)

• recently expanded to include (N, S, Si)

• some solvent/solution effects

reactionmechanismgenerator.github.io/RMG-Py/ 3



How do you teach a computer to think like a
chemist?
• recognize when 2 or more species are the same

• predict the thermo-kinetic parameters

• find all possible elementary reactions

• determine which reactions are important

• be flexible for new reactants on novel materials

➢accomplish all of the above in a bug-free manner
quicker than a grad student could!
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RMG represents specie
using graph theory
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we have added new features for adsorbates
ag "single metal bond" 4--waitak
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"can I find this structure
in my thermo database?"
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RMG-Cat estimates adsorbate thermochemistry
using simple rules of thumb
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We can now estimate binding energies via
linear scaling relations
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We can now estimate binding energies via
linear scaling relations
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Change in binding energy scales with
normalized bond order

0.32 eV

Fif4SI x 0.32 eV



Change in binding energy scales with
normalized bond order

-1 ,23 eV

s/reactants on any material io



We can now estimate thermochemistry of
any adsorbate
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RMG uses reaction families
to propose new reactions
Each species is decomposed into functional groups, and the functional
groups are reacted according to templates

RMG has over 40 reaction families:

• H-abstraction
• disproportionation
• Ps-scission
• Diels-Alder

• Korcek
• NO2 / ONO conversion
• cycloaddition
• etc.

RMG families specific to heterogeneous catalysis are...



!Adsorption
R1 R2

I . dissociative adsorption:

CH4(g) + 2* # CH3* + H*

2. non-dissociative adsorption:
• single bond: CH3(g) + * # CH3*

• double bond: CO(g) + * # CO*

• di-sigma bond: CH2O(g) + 2* # H2C*O*

• vdW bond: H20(g) + * # H20*

Ri



11. Dissociation

CH3* + * # CH2* + H*

III.Abstraction

CH3* + O* # CH2* + OH*

R2

s(find all possible elementary reactions

R2
II

R1 133
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As with thermo, RMG first looks for rate
coefficients in a database:

If not, then estimate it.

RMG-Cat uses bond-specific BEP relations,

but other options are available

"can I find this reaction in
my kinetics database?"

Ea = Eo + aAH

s(predict the kinetic parameters



To illustrate how RMG grows a mechanism,
start with CH4(g), 02(g) and vacant site *
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Add CH3*, H*, and 0*
to the core and start over
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Add CH30*, OH*, CH2*, and H2(g)
to the core and start over
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Continue to select species with high fluxes,
and leave slow species on the edge

Redge > ERchar
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Catalytic Partial
Oxidation (CPDX) of methane

• Reaction of 02 with hydrocarbons to
produce a hydrogen-rich synthesis gas
• a mixture of hydrogen and carbon monoxide

CH4 + CO + H2

• Extremely important in industry

• Energy conversion with fewer pollutants
than coal

Can we find a better catalyst?

0.40
CH0X (22) 0.0948
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CC-)H(17)



cPox using Pt coated foam monolith

catalyst
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 ►

N/Thermo database is based on Pt( I I I)

• Constant inlet flow rate 0.208 mol/min

• Figure shows steady state profile through
the tube

• Inlet atomic carbon/oxygen stoichiometry of
1.0

c; 0.00
Horn, R., et al. "Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts:
Oxidation and reforming zones, transport effects, and approach to thermodynamic
equilibrium." Journal of Catalysis 249.2 (2007): 380-393. doi:10.1016/j.jcat.2007.05.011
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CPDX simulated on Pt(I I I)
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How can we tell which metal is best?

• Ran simulations on 81 different metal surfaces for different atomic
carbon and oxygen binding energies

N(Extract selectivities, yields, conversions, maximum temperatures, etc.
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Synthesis gas on different metal surfaces
CO Yield H2 Yield
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Some metals have higher selectivity but lower yield.

What happens if the inlet ratio is changed?
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Synthesis gas yield for different inlet gas flows
CO Yield H2 Yield
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How can we tell which reaction is limiting?

• For each surface simulation, we changed the rate of each reaction in
the simulation by 1%, one at a time

N(Which reactions are most rate limiting (sensitive) on certain metals

Sensitivity — (XH2 yield — XH2 yield after perturbation) / (XH2 yield * 0.0 I )



Volcano plots for the sensitivity of a reaction on
H2 yield as a function of atomic binding energies
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RMG-Cat works, but we have a lot of work
to do

better
code

• Systematic coverage dependence

• Uncertainty quantification

• Kinetic Monte Carlo simulations

g••••••°'

better
numbers

• Add more reaction families
• Bi-dentate

• Eely-Rideal

• Kinetics calculations



Want to learn more?

• Read about it
• J. Phys. Chem. C, 2017, I 2 I (18), pp 9970-9981
DOI:  I 0.102I/acs.jpcc.7b02133 

• Download it
• DOI:  I 0.528 I /zenodo.290 I 19 (software)

• DOI:  I 0.528 I /zenodo.290 I 20 (database)

• Develop it!
• https://github.com/cfgoldsmith/RMG-Py/tree/cat

• https://github.com/cfgoldsmith/RMG-database/tree/cat



Contributions
• Built a CPDX model on Pt and validated it with experiments

• Expanded CPDX model on other catalysts using linear scaling relations

• Evaluated syn gas yields, selectivities, and conversions for different inlet
ratios

• Conducted sensitivity analyses to target important reactions on different
catalysts to see chemistry changes and why that would affect amount of
syn gas

• Our model suggests a catalyst with an elemental C binding energy of -
6.125 eV and 0 -4.000 eV gives highest yield, and further research is
suggested
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