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Why microkinetic models?

* Microkinetic models are a collection of elementary reactions
describing a complex chemical phenomena

* Traditional kinetic models simplify the chemistry by making
assumptions

* Microkinetic models do not make a priori assumptions to simplify the
chemistry
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Our strategy: use computers to build the
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We have RMG for heterogeneous catalysis!

Our code is merged with the newest release of
RMG version 2.4.0:

Reaction Mechanism Generator I I I I

developed for combustion (H, C, O)

* open source, Python based

mature (~50+ graduate-student years of development)
* recently expanded to include (N, S, Si)

* some solvent/solution effects

reactionmechanismgenerator.github.io/RMG-Py/



How do you teach a computer to think like a
chemist!?

* recognize when 2 or more species are the same
* predict the thermo-kinetic parameters

* find all possible elementary reactions

* determine which reactions are important

* be flexible for new reactants on novel materials

»accomplish all of the above in a bug-free manner
quicker than a grad student could!




RMG represents specie
using graph theory
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we have added new features for adsorbates

e.g. “single metal bond” "D

\, can | find this structure
in my thermo database?”

v'recognize when 2 or more species are
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RMG-Cat estimates adsorbate thermochemistry
using simple rules of thumb

gas-phase species from
. database or group additivity
estimate

H v
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= Cpgas + ACPadsorption

\_ estimated from
statistical thermodynamics

v predict the thermodynamic parameters 6



We can now estimate binding energies via
linear scaling relations
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Abild-Pedersen et al., Phys. Rev. Lett. (2007)
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On many metals,
simple rules can
predict the binding
energy



We can now estimate binding energies via
inear scaling relations
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Change in binding energy scales with
normalized bond order
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Change in binding energy scales with
normalized bond order

-1.23 eV

v'reactants on any material



We can now estimate thermochemistry of
any adsorbate
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RMG uses reaction families
to propose new reactions

Each species is decomposed into functional groups, and the functional
groups are reacted according to templates

RMG has over 40 reaction families:
e H-abstraction
* disproportionation

e [-scission
 Diels-Alder

Korcek

NO, / ONO conversion
cycloaddition

etc.

RMG families specific to heterogeneous catalysis are...



l. Adsorption

|. dissociative adsorption:

CH,(g) + 2* = CHy* + H*

2. non-dissociative adsorption:
* single bond: CH;(g) + * = CH;*
* double bond: CO(g) + * = CO*
* di-sigma bond: CH,O(g) +2* = H,C*O*
* vdW bond: H,0O(g) + * & H,O%*




ll. Dissociation

CH,* + * = CH,* + H*

ll1l. Abstraction

CH,* + O* = CH,* + OH*

v'find all possible elementary reactions




As with thermo, RMG first looks for rate
coefficients in a database:

Olg) + )+ () = (N) + \/

“can | find this reaction in
my kinetics database?”

If not, then estimate it.
RMG-Cat uses bond-specific BEP relations,

C 5 = —|—
but other options are available E,=E,+aAH

v'predict the kinetic parameters 5



To illustrate how RMG grows a mechanism,
start with CH,(g), O,(g) and vacant site *

_— fv‘hq
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Add CH,*, H*, and O*
to the core and start over

Rehar = \/ E R? species i € core
:

Redge & ERchar

OH*




Add CH,O0*, OH*, CH,*, and H,(g)
to the core and start over

Rehar = \/ E R? species i € core
, ;

Redge > eRchar




Continue to select species with high fluxes,
and leave slow species on the edge

 Rehar = \/ E R? species i € core
;

Redge > 6Rchar

v'determine which reaétions are 19
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Catalytic Partial
Oxidation (CPOX) of methane %~

* Reaction of O, with hydrocarbons to
produce a hydrogen-rich synthesis gas
* a mixture of hydrogen and carbon monoxide

CH,+0,= CO +H,
e Extremely important in industr
y imp

* Energy conversion with fewer pollutants
than coal

Can we find a better catalyst?



CPOX using Pt coated foam monolith
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Horn, R, et al. "Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts:

Oxidation and reforming zones, transport effects, and approach to thermodynamic

equilibrium." Journal of Catalysis 249.2 (2007): 380-393. doi:10.1016/j.jcat.2007.05.01 | =



CPOX simulated on Pt(111)
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* Does not include diffusion or
conduction

e All calculations are based on
Pt(111), where experimental
values were not

* See both partial and full
oxidation

v" Simulation matches
experimental well enough to
use LSRs to start simulations
on different types of metals

22

Experiment replicated from Horn et al., ). Catalysis (2007)



How can we tell which metal is best?

 Ran simulations on 81 different metal surfaces for different atomic
carbon and oxygen binding energies

v Extract selectivities, yields, conversions, maximum temperatures, etc.



AE9 (eV)

Synthesis gas on different metal surfaces
CO Yield H, Yield

AEC (eV) AEC (eV)
Some metals have higher selectivity but lower yield.

What happens if the inlet ratio is changed!?

24



Synthesis gas yield for different inlet gas flows

CO Yield H, Yield
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Not only does each metal affect yield,
feed gas composition does as well

25



How can we tell which reaction is limiting?

* For each surface simulation, we changed the rate of each reaction in
the simulation by |%, one at a time

v"Which reactions are most rate limiting (sensitive) on certain metals

H2 yield after perturbation



AEQ (eV)

Volcano plots for the sensitivity of a reaction on
H, yield as a function of atomic binding energies

0 0 0 CH, OH
Og) = I + | CH@+ | =1 + |
[X]  [X] [X]  [X] [X]
150
- 30 3 _ N [
- - 100
...3 fg _3 — -!'Q
10 = B
C o
4+ = 0 S —4- * Lo
-10 4 - 50
_5 = _5 -
- =20 - —100
-6 v 6 - o
i’ ~0 I ~150




RMG-Cat works, but we have a lot of work
to do
' —
better better
code - numbers

* Systematic coverage dependence ¢ Add more reaction families

 Uncertainty quantification * Bi-dentate
* Eely-Rideal

* Kinetics calculations

e Kinetic Monte Carlo simulations

28



Want to learn more?

* Read about it
* |.Phys. Chem.C,2017, 121 (18), pp 9970-998|
DOI: 10.1021/acs.jpcc.7b02133
* Download it
* DOI: 10.5281/zen0do.2901 19 (software)
* DOI: 10.5281/zen0do.290120 (database)

* Develop it!
* https://github.com/cfgoldsmith/RMG-Py/tree/cat
* https://github.com/cfgoldsmith/RMG-database/tree/cat




Contributions

* Built a CPOX model on Pt and validated it with experiments
* Expanded CPOX model on other catalysts using linear scaling relations

* Evaluated syn gas yields, selectivities, and conversions for different inlet
ratios

* Conducted sensitivity analyses to target important reactions on different
catalysts to see chemistry changes and why that would affect amount of

syn gas

* Our model suggests a catalyst with an elemental C binding energy of -
6.125 eV and O -4.000 eV gives highest yield, and further research is

suggested
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