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Comparing different (but related) chemical systems

Autoignition chemistry Tropospheric oxidation

William Putman, NASA/Goddard
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i = = : . individual reaction types

Understanding mechanisms

. %&’ )qy allows rigorous generalization
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&iﬁf — AL individual carbonyl oxide
o — channels?
dE' Peroxy radical chemistry —

can we isolate specific
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e R —> alkene + R’

[ ]
conjugate alkene + HO,

[ ]
cyclic ether + OH

¢OOQOOH p-scission products + OH
HOOQ'OOH The chemistry of

autoignition has been
studied for many decades —

[ ]
HOOQ’'=0 + OH Some details remain hidden

[ ]
A + OH (chain-branching)

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
Prog. Energy Combust. Sci. 2011, 37, 341.

Kinetic Models for Ignition
Chemistry Require Knowing
Reactions of “Intermediates”

* QOOH + 0O, is responsible for chain
branching

* Chain branching step goes through
dissociation of a ketohydroperoxide

* |[somers make a difference
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Tropospheric oxidation shares the same
l isomerizations and intermediates

@ ®* 0Q'=0 + OH + OH (chain-branching) \ a

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
Prog. Energy Combust. Sci. 2011, 37, 341.




Kinetic models for tropospheric
oxidation require knowing reactions
of other intermediates

Carbonyl oxides (“Criegee
intermediates”) formed in ozonolysis
are potential tropospheric reactants

Potential

Energy . .
Intermediates are isomers of other

stable or reactive species
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Synchrotron photoionization mass
spectrometry can detect and
characterize these intermediates \‘ '
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Isomer-Resolved
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Chemical Kinetics S

Crr




Need to make the intermediates and

then we can detect them
S r—E Y miz = 60 product from CH;CHI + O, CH2| + 02 9 CHZOO + I

—— zero [H,0] —@— high [H,0]
CH?_OO (caleulated) —— Fit = = Vinyl hydroperoxide
— = Dioxirane (calculated)

—®— Formic acid (Cool et al.) /E\ /0 , ‘V o gem - i Od Oa | kY| + 02 9

HsC o

carbonyl oxide + |

Welz et al., Science 335, 204 — 207 (2012);
Taatjes et al. Science 340, 177-180 (2013)

Integrated photoion signal
Relative integrated photoion signal

miz=125
[0so=1.5x 10" cm™
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A J.D. Savee, E. Papajak, B. Rotavera, H. Huang, A.J. 8
CPFv Eskola, O. Welz, L. Sheps, C.A. Taatjes, J. Zador,
e A

D.L. Osborn, Science 347, 643-646 (2015).



Additions of QOOH to O, are important to
complex oxidation submechanisms

Crounse et al., J. Phys. Chem.
R R’ . . . .
Ao 0 Lett:4,3513-35202013) Can we assume kinetics similar to alkyl + O,
H;0

R\I)k/g- reactions?

* Preparing QOOH by alternative methods (e.g.,
Cl + ROOH) allows direct kinetics
measurement (zador et al. PCCP 15, 10753-10760 (2013))

R HZC.\C/CHB
* Resonance stabilization = F=——— "\
can dramatically shift § L s aeny
. 1S QOH (1986)
dominant product B[ e oo
channels in these Tl . L | e (18
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Double resonance stabilization allowed first
direct detection of QOOH

Resonance stabilization greatly reduces
reactivity with O,

s e ool o laaaadaa sl s las ol oo doaaad o loany
8.3 eV, QOOH,g
_/-[O;.]=1‘9x10‘”'cm"

[0,]=7.3x 10" cm

[0,]=1.5x 10" cm™

L N R R R R AR AR RRRES

0 10 20 30 40 50
Kinetic Time (ms)

Both rise and decay of C,H40, faster as [O,]
increases

kqooms 02 = (2.9 £1.0) x 101> cm3 57!
kg.o0p = (3.2 £0.5) x 1016 cm3 !

Energy (kcal/mol)

Extreme resonance stabilization

Ketone oxidation — resonance

: — stabilized QOOH are preferred
20 — P \ i Scheer et al., Phys. Chem. Chem. Phys. 16, 13027-13040
: : S— (2014); J. Phys. Chem. A 120, 8625-8636 (2016)
: : Make more stable QOOH?
o —_—
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<10 — decomposition
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qo | Sy EENT L B[ 7 g ........... QOOHy
J.D. Savee, E. Papajak, et al., X
Science 347, 643-646 (2015). - m
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Compare the autoignition process to the autoxidation
to highly oxygenated species in the troposphere

What stops the process towards chain branching?

A Tertiary R: No KHP — 3 O, addition instead

Sl N iy
c c CHs Wang et al., Combust. Flame 164, 386—396 (2016).

| )
CHs

+ O, | isomerize

(|7 Hy |
HsC C_H _CH
HO\O " c|:H3 \?/ \(|:/ “CH,
Fee | e CH + 0y
e e, CHs O
[ H 2

CHs

What else can intercept these molecules on the path?

Alkyl radicals can be removed more rapidly ... with OH?
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OH + CH,00

OH + CH;00 rate coefficient is large:

effect depends on products 10 (+3,-6) %

Calculated ~ 7% branching to CH,00 + H,0

metha n0| (Miller et al., Nature Comm.7,13213 (2016))

CH,OH + 0,

80+20%

At high side of uncertainty could
solve “methanol problem” (Kim et al.) e bi1-6121 (3016}
' HO, + CH,0

E. Assaf et al., Environ. Sci.
Technol. 51, 2170-2177 (2017)

MPIMS shows all products at once

Total loss of CH,00

Can arrange kinetics so that most of
CH;00 is consumed by OH

[CH,00] / molecule cm N

Correct the observed methanol yield

for other CH;0H sources Caravan et al.,

unpublished
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Branching may not be enough
to solve the problem!

INTEX-A Atlantic

Altitude (km)

12

10

Remaining experimental
changes may improve

daCcuracy

s INTEX-B Pacific

Khan et al., unpublished 1 1
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o el 1] O@U « Criegee intermediates have
/-— (.7 QQ multireference electronic character

,H ,CO0 CA") +H (’S) ‘,‘,7’@0 = Ground state is dominantly the
closed-shell singlet zwitterion
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H,COO ('A’) + H (S) n-.( 2 o o
- ©) ° °
060 HZC/@)\O e o

= How should they react? ... not like
- radicals!

= CH,00 + NO 7.5x 1012 cm3s-?
Lightfoot et al., Atmos. Environ. A 26, 1805 — 1961 (1992)
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R (H-H,C00), A

= CH,00 +NO <6x 10 cm3s-1
Welz et al., Science 335, 204 — 207 (2012)

Miliordos and Xantheas, Angew. Chem. Int. Ed. 55, 1015-1019, 2015 . .
= \What about reactions with closed-

shell species?
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The chemistry of ozonolysis was largely worked out
from solution phase — gas phase can be different!

Criegee (1975) outlined four types of reactions that
carbonyl oxides undergo: dimerization, reaction with
carbonyls, isomerization, and reactions with “proton
active substances”

T T
200 300 400 500
Total pressure (Torr)

Generalization (caT, Annu. Rev. Phys. Chem. 2017):
Reactions with other 1,3 bipoles
Unimolecular reactions
Cycloadditions
Insertions
Addition to radical species

® Crr “



Since discovery of the gem-iodoalkyl + O, synthesis:
UV spectra for carbonyl oxides have been measured

Many groups have begun to measure reactions of
carbonyl oxides: Boering (Cal); Lin (IAMS); Lester (Penn);

oSyl h o Blitz/Seakins/Heard (Leeds); Bloss (Cambridge); Orr-
antLCHGHOO Ewing (Bristol); Green (MIT)
Nature of products can make a difference in
troposphere
Insertions
Sheps et al, P:I::j:r‘:t:h(:r:)Phys. 16, Reactions with other 1,3 bipoles

26701-26706 (2014)

Unimolecular reactions
Cycloadditions
Addition to radical species

Tor g&
0%)* 250
o . /\
S, oA . .. 16
02 04 06 08 10 mv
«& QK
G

Hg 1 100%

Chao et al, Science. 347, 751-754 (2014)



O exp. === fit[PFOA] =0
\ exp. — fit [PFOA] = 6.1 x 10 cm”
o exp. = = fit[PFOA]=1.8x 10" cm”

Proton active species — insertion

Acids react with carbonyl oxides at

supercollisional rates (welz et al., Angew.
Chem. Int. Ed. 53, 4547-4550 (2014); Foreman et al.,
Angew. Chem. Int. Ed. 55, 10419-10422
(2016);Chhantyal-Pun et al., Angew. Chem. Int. Ed.
56, 9044-9047 (2017))

Carbonyl oxide reactions in

solution: ROH>H,0>CH,CO,H
In gas phase RCO,H >> ROH, H,O

Fast reaction general for all acids P i
PFOA reacts slowly with OH

@+ CH,00H"
Reaction with CH,00 is fast:
{4.7550)7) x 100 cm?'s !

0 5
Eskola et al., unpublished time / ms

CH,00 + HCl reaction

re P

lon signal (scaled)/ a.u

) ""W."‘ ;
NN I 2 ok
What are the products of os Fan® Lo ae A

reactions with acids? , . P

Photon energy / eV

Caravan, Rotavera et al., /\
unpublished @Fv 17



Energy (kcal mol™)
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60 61 62
m/z

Reactions with acids appear to
form hydroperoxyesters
Adduct mass observed

Dissociative ionization to
protonated carbonyl oxides

There are other possibilities

Acid-assisted tautomerization
(Kumar et al., Phys. Chem. Chem. Phys., 2014, 16,
22968-22973; Liu et al., Phys. Chem. Chem. Phys.,
2015, 17, 20490-20494)
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Most common proton active
species —H,0

Differences in reactivity among
carbonyl oxides:

(CH3)2COO < 15 X 10-16 (Huang et al., Proc.

Natl. Acad. Sci. U.S.A. 112, 10857-10862 (2015))

CHZOO (32 i 12) X 10_16 (Berndt et al.,

Phys. Chem. Chem. Phys. 17, 19862—-19873 (2015))

anti-CH,CHOO (2.3 £ 2.1) x 104

(Huang et al., Proc. Natl. Acad. Sci. U.S.A. 112, 10857—-10862
(2015))

H,O0 monomer reactions have
conformer dependence — syn-
CH;CHOO unmeasurably slow

H,O dimer reaction is the
dominant removal mechanism for
tropospheric CH,00

mlz = 60 product from CH;CHI + O,
—(C— zero [H,0] —@— high [H,0]
—— Fit — — Vinyl hydroperoxide

H

(o} o
He o~
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A o kobs
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CH,00 + (H,0), ~
5x 101 cm3st

Chao et al, Science 347, 751-754
(2014); Lewis et al., Phys. Chem.
Chem. Phys. 17, 4859-4863 (2015);
Smith et al., J. Phys. Chem. Lett. 6, Chao et al, Science. 347, 751-754 (2014)

27082713 (2015) @F 19
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Does reaction of CH,00 and
water dimer make formic acid?

Water monomer reaction makes
hydroperoxymethanol
(hydroxymethyl hydroperoxide)

Suggestion that reaction with
dimer makes ~ 50% HCOOH guyen

et al., Phys. Chem. Chem. Phys. 18, 10241-10254 (2016))

Can confirm rate coefficient with
UV absorption, photoionization

MPIMS measures all products
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Fdlmer (CHZOO)

5F PIMS: 30 Torr O (He)

Kgecay (1000 57)

Sheps et al., in review

UV: 30 Torr ® (He)
35-47 Torr 4 (He)
50 Torr B (He) W (N2)
100 Torr A (He)
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A(E+ZPE) /kcal ‘mol™"

[H,0] =0 cm? = CH,O

- -1,0
—9 61017 ome> 2
[H,0]=2.6-10" cm> _g HMHP

ion <ignai_arb:.

- CH,0
-~ HMHP

10 20 30

[H,0]=11-10" cm®

R
Y orsio

Reaction
Path

Calculation of CH,00 + (H,0),
reaction suggests entrance
complex that dissociates to
HMHP and H,O

Anglada and Solé Phys. Chem. Chem. Phys. 18, 17698-17712 (2016)
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Do other proton-active
species in the gas phase also
insert?

ROOH - CH,00 reaction with
(CH;);COOH makes adduct

ROH? — reactions with CH,0H

insert in solution phase

Acetone oxide + methanol
No observed adduct mass
Product at carbonyl mass?
Product with CD;0H is acetone

—— Acetone
e Propanal

| |(CH3),CO0O + CH;0H
—O— Experimental data

----- Methyloxirane
— — 2-Propen-1-ol

lon signal (m/z 58) / a.u.

Caravan, Eskola et al.,
unpublished

9.5 10.0
Photon energy / eV
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alkene + O3

Primary
ozonide Crieges
Intermediate
+

carbonyl

Vereecken et al., Phys. Chem. Chem. Phys.
14, 14682-14695 (2012)
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winyl
hydroperoxide dioxirane
(VHP} [(e]le}]

9.5
Photon energy / eV

singlet
bisoxy
(5BQ)

—*—)

Compaetition between chemically activated reaction and thermalization of intermediate

decomposition

Isomerization has two basic
pathways — dioxirane and vinyl
hydroperoxide

Is it that simple?

* (CH;),CO0 isomerizes to

hydroxyacetone (catetal, J. phys. Chem.
A 121 16-23 (2017))

Temperature dependence
confirms first-order gas phase
reaction (Caravan et al., unpublished)

Observed in solution long ago
(P. R. Story and J R. Burgess, J. Am. Chem. Soc.
89, 5726 (1967); 90, 1094 (1968))

Proposed to start from VHP

23
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Cycloaddition — reaction with
carbonyls is one of the three
steps in the Criegee
mechanism

Detect secondary ozonides

Carbonyl oxides can transfer
O atom — are these mediated
by cycloaddition?

(S0, =15x 10" cm®
— = miz =74 (C3HgO,)

—_— miz =80 (SO,)

[\ ,NW’\

signal

Scaled photoion

| |

Jeteoutesl |y

! 2 j — 2xm/z=116 (SO)
i i — m/z=101(SO - 15)
L. f ; » — m/z=84 (SO -32)
YL R / m/z =43 (SO - 73)

h -8—- m/z = 46 (CH,00)

— fit (m/z = 46)
-5 m/z=101 (SO - 15)

Energy-Integrated Photoion Signal

10 i 100
Time /ms Photon Energy / eV

Eskola et al., unpublished

Kurtén et al., J. Phys. Chem. A

115, 8669-8681 (2011) ﬁ
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SO, reactions make SO, but
other pathways are possible

Pressure dependence is
observed in reaction of

acetone oxide with SO, (chhantyal-

Pun et al., J. Phys. Chem. A 121 4-15 (2017); Huang et
al., Proc. Nat. Acad. Sci. USA 112, 10857—-10862 (2015))

All direct rate coefficient
measurements so far have
been for total carbonyl oxide
removal

G

e e

Toq DIO+SO,

25 HCO+HSOy

HCOOH+S0, |:1157

Vereecken et al., Phys. Chem. Chem. Phys. 14, 14682-14695 (2012)
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3
= [NO,] = zero molecule cm

Reactions with radicals? CH,CHOO I PP

+NO,
Look at NO, — how does this
reaction proceed?

Could be source of NO,?
No NO, observed
See signal at mass of adduct —

See decrease in carbonyl Kineti ime / ms
Upper limit of 30% NO,

—&— m/z 106: C,H,O,N

=
©
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c
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2]
(=1
o

Effect of carbonyl oxides on
NO,; may be even smaller
than we thought

Normalized ion signal / a.u.

1.0
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e Hydrocarbon structure and
resonance stabilization can
dramatically affect
autoxidation processes

* Importance of carbonyl
oxide reactions to the
atmosphere depends on
fate of adducts
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