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Comparing different (but related) chemical systems

Autoignition chemistry Tropospheric oxidation

John Dec, Sandia
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Specific investigations target
individual reaction types

Understanding mechanisms
allows rigorous generalization

Ozonolysis — can we focus on
individual carbonyl oxide
channels?

Peroxy radical chemistry —
can we isolate specific
transformations?
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.
• R alkene + R1

+ 02 11,

conjugate alkene + H02

•
cyclic ether + OH

The chemistry of
autoignition has been
studied for many decades —

Some details remain hidden

H + OH (chain-branching)

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
Prog. Energy Combust. Sci. 2011, 37, 341.

Kinetic Models for Ignition
Chemistry Require Knowing
Reactions of "Intermediates"
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• QOOH + 02 is responsible for chain
branching

• Chain branching step goes through
dissociation of a ketohydroperoxide

• Isomers make a difference

CRF
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• R alkene + R1

+ 02 11,
•

ROO• conjugate alkene + H02

II .

• Q0OH  > cyclic ether + OH

+ 02
•

• OOQOOH fl-scission products + OH

•
HOOQ'OOH

•
HOOQ'=0 + OH

• •
• 0Q1=0 + OH + OH (chain-branching)

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
Prog. Energy Combust. Sci. 2011, 37, 341.
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4, 3513-3520 (2013)
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Tropospheric oxidation shares the same
isomerizations and intermediates
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Kinetic models for tropospheric
oxidation require knowing reactions
of other intermediates

Carbonyl oxides ("Criegee
intermediates") formed in ozonolysis
are potential tropospheric reactants

Intermediates are isomers of other
stable or reactive species
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Synchrotron photoionization mass
spectrometry can detect and
characterize these intermediates
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Need to make the intermediates and
then we can detect them

—0— rn/z= 46 from CH2l + 02

— CH200 (calculated)

— — Dioxirane (calculated)

—ID— Formic acid (Cool et al.)

o /

0—CH2 /

10.0 10.5 11.0 11.5 12.0

Photon energy (eV)

m/z = 60 product from CH3CHI + 02
—0— zero [F120] high [F120]
— Fit — — Vinyl hydroperoxide

9.2 9.4 9.6
Photon energy (eV)

CH2I + 02 4 CH200 + I

gem-iodoalkyl + 02 4

carbonyl oxide +
Welz et al., Science 335, 204 — 207 (2012);
Taatjes et al. Science 340, 177-180 (2013)

m/z =125
[01 = 1.5 x 10" cm '
-0- 0 - 40 ms

85 90

Photoionization Energy (eV)

J.D. Savee, E. Papajak, B. Rotavera, H. Huang, A.J.
Eskola, 0. Welz, L. Sheps, C.A. Taatjes, J. liclor,
D.L. Osborn, Science 347, 643-646 (2015).



Additions of QOOH to 02 are important to
complex oxidation submechanisms

Crounse et al., J. Phys. Chem.

Lett. 4, 3513-3520 (2013) • Can we assume kinetics similar to alkyl + °2
-1-12o

OOH

H-shiftf
decomp.

HOO
R

R'

°

O

H-shift

reactions?

• Preparing 000H by alternative methods (e.g.,
CI + ROOH) allows direct kinetics
measurement (Zador et al. PCCP 15, 10753-10760 (2013))

• Resonance stabilization
can dramatically shift
dominant product
channels in these
reactions
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Double resonance stabilization allowed first
direct detection of QOOH

Resonance stabilization greatly reduces
reactivity with 02

8.3 eV, Q00Hop -

=1.9 x 1016 cm•3

1071= 7.3 x 10''' cm

[0,] = 1.5 x 1017 cm 3
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Both rise and decay of C7H902 faster as [02]
increases

kQ00H+ 02 = (2.9 ± 1.0) x 10-15 cm3 s-1

kR+o2 = (3.2 ± 0.5) x 10-16 cm3 s-1
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Extreme resonance stabilization

R + 02

Li-

Ftr,02

J.D. Savee, E. Papajak, et al.,

Science 347, 643-646 (2015).

Ketone oxidation — resonance
stabilized QOOH are preferred

Scheer et al., Phys. Chem. Chem. Phys. 16, 13027-13040

(2014); J. Phys. Chem. A 120, 8625-8636 (2016)

Make more stable QOOH?

RO2

QOOH

unimolecular

decomposition
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•
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• R alkene 4
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ROO•

• Q0OH 

( 02

• 00Q0OH

•
HOOQ'OOH

HOOQ'=0 + OH
•

• •
• OQ'=0 + OH + OH (chaii

Compare the autoignition process to the autoxidation
to highly oxygenated species in the troposphere

What stops the process towards chain branching?
CH3

H2

H3C.

nCH3

Tertiary R: No KHP — 3rd 02 addition instead

cyl
CH3

+ 02

H2

isomerize

Wang et al , Combust. Flame 164, 386-396 (2016).
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What else can intercept these molecules on the path?

Alkyl radicals can be removed more rapidly ... with OH?

0
CRE.
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OH + CH300

OH + CH300 rate coefficient is large:
effect depends on products

Calculated — 7% branching to
methanol (Muller et al., Nature Comm.7,13213 (2016))

At high side of uncertainty could
solve "methanol problem" (Kim et al.)

MPIMS shows all products at once

Can arrange kinetics so that most of
CH300 is consumed by OH

Correct the observed methanol yield
for other CH3OH sources

C H 200 + H 2 0

H02 + CH30

CH3OH 02

C. Yan et al., J. Phys. Chem. A
120, 6111-6121 (2016)

E. Assaf et al., Environ. Sci.
Technol. 51, 2170-2177 (2017)
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Branching may not be enough
to solve the problem!

o

Remaining experimental
changes may improve
accuracy

INTEX-B Pacific

—0— Experimental data

— Multipeak Gaussian fit
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Miliordos and Xantheas, Angew. Chem. Int. Ed. 55, 1015-1019, 2015

CRF

• Criegee intermediates have
multireference electronic character
• Ground state is dominantly the

closed-shell singlet zwitterion

0

H

,(:)

..2 _

.
H2C

• How should they react? ... not like
radicals!

• CH300 + NO 7.5 x 10-12 cm3
Lightfoot et al., Atmos. Environ. A 26, 1805 — 1961 (1992)

• CH200 + NO
Welz et al., Science 335, 204 — 207 (2012)

< 6 x 1014 - —3CM 8-1

• What about reactions with closed-
shell species?
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The chemistry of ozonolysis was largely worked out
from solution phase — gas phase can be different!

Criegee (1975) outlined four types of reactions that
carbonyl oxides undergo: dimerization, reaction with
carbonyls, isomerization, and reactions with "proton
active substances"

Generalization (CAT, Annu. Rev. Phys. Chem. 2017):
Reactions with other 1,3 bipoles
Unimolecular reactions
Cycloadditions
Insertions
Addition to radical species

15
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Since discovery of the gem-iodoalkyl + 02 synthesis:
UV spectra for carbonyl oxides have been measured
Many groups have begun to measure reactions of
carbonyl oxides: Boering (Cal); Lin (IAMS); Lester (Penn);
Blitz/Seakins/Heard (Leeds); Bloss (Cambridge); Orr-
Ewing (Bristol); Green (MIT)

Nature of products can make a difference in
troposphere

Insertions
Reactions with other 1,3 bipoles
Unimolecular reactions
Cycloadditions
Addition to radical species

CRF;
16
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Proton active species — insertion

Acids react with carbonyl oxides at
supercollisional rates (Welz et al., Angew.
Chem. Int. Ed. 53, 4547-4550 (2014); Foreman et al.,
Angew. Chem. Int. Ed. 55, 10419-10422
(2016);Chhantyal-Pun et al., Angew. Chem. Int. Ed.
56, 9044-9047 (2017))

Carbonyl oxide reactions in
solution: ROH>H20>CH3CO2H

In gas phase RCO2H » ROH, H20

Fast reaction general for all acids
PFOA reacts slowly with OH

Reaction with CH200 is fast:
(4.7 ± 0.7) x 1040 CM3 S-1

What are the products of
reactions with acids?

O exp. - - - fit [PFOA] = 0

.6 exp. — fit [PFOA] = 6.1 x 101  cm

O exp. — — fit [PFOA] = 1.8 x 1012 cm 3

►
o

Eskola et al., unpublished
5 10 15

time / ms
20 25

T3

o

10.0

CH200 + HCI reaction
♦ 37C1CH2001-1.
—0— 

as
CICH200H

.

••••• CH200H*

10.2

♦!. •
4

•
06 

•••.

Air ie%.**/

10.4 10.6

Photon energy / eV

10.8 11.0

Caravan, Rotavera et al.,
unpublished
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TSVHP  -11.8

CH3CHOO

DCOOD

HCOOH

60

CD3COOD

CH3COOH

61 62
m/z

-32.0

Int2

-43.3

HPEF

-17.8

VHP

fb-J

1.2

/01-Vinoxy
rI Products

Reactions with acids appear to
form hydroperoxyesters

Adduct mass observed

Dissociative ionization to
protonated carbonyl oxides

There are other possibilities
Acid-assisted tautomerization
(Kumar et al., Phys. Chem. Chem. Phys., 2014, 16,
22968-22973; Liu et al., Phys. Chem. Chem. Phys.,
2015, 17, 20490-20494)
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Most common proton active
species — H20

Differences in reactivity among
carbonyl oxides:

(CH3)2C00 < 1.5 X 10-16 (Huang et al , Proc.
Natl. Acad. Sci. U.S.A. 112, 10857-10862 (2015))

CH200 (3.2 ± 1.2) X 10-16 (Berndt et al.,
Phys. Chem. Chem. Phys. 17, 19862-19873 (2015))

anti-CH3CHOO (2.3 ± 2.1) x 10-14
(Huang et al., Proc. Natl. Acad. Sci. U.S.A. 112, 10857-10862
(2015))

H20 monomer reactions have
conformer dependence — syn-
CH3CHOO unmeasurably slow

H20 dimer reaction is the
dominant removal mechanism for
tropospheric CH200

O

m/z = 60 product from CH3CHI
zero [H20] -(11- high [H20]

4 -- Fit - - Vinyl hydroperoxide
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Chao et al, Science 347, 751-754 0

(2014); Lewis et al., Phys. Chem.

Chem. Phys. 17, 4859-4863 (2015);

Smith et al., J. Phys. Chem. Lett. 6,

2708-2713 (2015)

o k.„

-quadratic fit

•
0.0 0.2 0.4 0.6

HR 1100%

R2 = 0.9927

0.8 1.0

Chao et al, Science. 347, 751-754 (2014)

CRF



Does reaction of CH200 and
water dimer make formic acid?

Water monomer reaction makes
hydroperoxymethanol
(hydroxymethyl hydroperoxide)

Suggestion that reaction with
dimer makes N 50% HCOOH (Nguyen
et al., Phys. Chem. Chem. Phys. 18, 10241-10254 (2016))

Can confirm rate coefficient with
UV absorption, photoionization

MPIMS measures all products
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reaction suggests entrance
complex that dissociates to
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Anglada and Solé Phys. Chem. Chem. Phys. 18, 17698-17712 (2016)
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Do other proton-active
species in the gas phase also
insert?

ROOH — CH200 reaction with
(CH3)3COOH makes adduct

ROH? — reactions with CH3OH
insert in solution phase

Acetone oxide + methanol
No observed adduct mass

Product at carbonyl mass?

Product with CD3OH is acetone

0

(CH3)2000 + CH3OH
—0— Experimental data

Acetone
Propanal
Methyloxirane

- - 2-Propen-1-ol

c  VC (4111F) , • 

/

A

(war" ci,IVG0
e 
wee 46..
•

9.0 9.5 10.0

Photon energy / eV

Caravan, Eskola et al.,
unpublished
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Ta.
alkene + 03 Competition between chemically activated reaction and thermalization of Intermediate

POZ

\il
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ozonids Chingee
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Vereecken et al., Phys. Chem. Chem. Phys.

14, 14682-14695 (2012)
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• lsomerization has two basic
pathways — dioxirane and vinyl
hydroperoxide

• Is it that simple?

• (CH3)2C00 isomerizes to
hydroxyacetone (CAT et al, J. Phys. Chem.
A 121 16-23 (2017))

• Temperature dependence
confirms first-order gas phase
reaction (Caravan et al., unpublished)

• Observed in solution long ago
(P. R. Story and J R. Burgess, J. Am. Chem. Soc.
89, 5726 (1967); 90, 1094 (1968))

• Proposed to start from VHP
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Cycloaddition — reaction with
carbonyls is one of the three
steps in the Criegee
mechanism

Detect secondary ozonides

Carbonyl oxides can transfer
0 atom — are these mediated
by cycloaddition?
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S02 reactions make S03 but
other pathways are possible

Pressure dependence is
observed in reaction of
acetone oxide with S02 (Chhantyal-
Pun et al., J. Phys. Chem. A 121 4-15 (2017); Huang et
al., Proc. Nat. Acad. Sci. USA 112, 10857-10862 (2015))

All direct rate coefficient
measurements so far have
been for total carbonyl oxide
removal

CRF
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.32.2
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Vereecken et al., Phys. Chem. Chem. Phys. 14, 14682-14695 (2012)
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Reactions with radicals?

Look at NO2 — how does this

reaction proceed?

Could be source of NO3?

No NO3 observed

See signal at mass of adduct

See decrease in carbonyl

Upper limit of 30% NO3

Effect of carbonyl oxides on

NO3 may be even smaller

than we thought

Caravan et al., Faraday Discuss. in press

CH3CHOO

+ NO2

lo
n 
si
gn
al
 (
m
/
z
 4
 

- [NO2] = zero molecule cm 3
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• Hydrocarbon structure and
resonance stabilization can
dramatically affect
autoxidation processes

• Importance of carbonyl
oxide reactions to the
atmosphere depends on
fate of adducts

28
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