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A Vision of the future
4 Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory
- SpMV and GEMM accelerator
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Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming
models??

- GPU: CUDA, HIP, SyCL, OpenMP
- CPU: OpenMP, OpenACC
- PIM: ??

L DDR

111 
NIC

NVRAM IMP



Applications

SNL NALU
Wind Turbine CFD

ORNL Summit
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SNL LAMMPS
Molecular Dynamics

IBM Power9 / NVIDIA Volta LANL/SNL Trinity
Intel Haswell / Intel KNL

Libraries Frameworks
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UT Uintah
Combustine

ANL Aurora
Intel Xeon CPUs + Intel Xe Compute

ORNL Raptor
Large Eddy Sim
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SNL Astra
ARM Architecture



Kokkos EcoSystem

Kokkos
Tools

Debugging

Profiling

Tuning
A

Science and Engineering Applications

Kokkos EcoSysiem

Kokkos Kernels

Linear Algebra Kernels Graph Kernels

Kokkos Corc
Parallel

Execution r Parallcl Data
Structures

Kokkos
Support

Documentalion

Tulorials

Booicamps

App support

Kokkos Remote Spaces

PGAS 10

MuitACore Maw-Core APU
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: Kokkos Development Team

: kokkos
- Sandia OAKt RIDGEx:4

 EST 1943  

4 cscsLosAlamos Argonne I nil National
NATIONAL LABORATORY

NATIONAL t ACCRA-OR Laboratories National Laboratory

• Dedicated team with a number of staff working most of their time on Kokkos

• Main development team at Sandia in CCR

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter



7.
, Kokkos Core Abstractions

All Data Structures 41
=Pi

Memory Spaces ("Where") Ill

P

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

Tlerniry .fir11ow 11
- Streaming, Atomic, Restrict

ara e xecu ion

P" Execution Spaces ("Where") 111

- CPU, GPU, Executor Mechanism
, N

xecu ion a erns

- parallel for/reduce/scan, task-spawn

xecution o icies ow

- Range, Team, Task-Graph



Kokkos Core Capabilities
ncept

Parallel Loops parallel_for( N, KOKKOS_LAMBDA (int i) { ...BODY... });

Parallel Reduction parallel_reduce( RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd +=
Sum<>(result));

Tightly Nested
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (int i, int j, int k) {...BODY...});

Non-Tightly Nested
Loops

Task Dag

parallel_for( TeamPolicy<Schedule<Dynamic>>( N, TS ), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange( team, M(N)), [&] (int j) { ... INNER BODY... });
... COMMON CODE 2 ...

});

task_spawn( TaskTeam( scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });

Data Allocation View<double", Layout, MemSpace> a("A",N,M);

Data Transfer deep_copy(a,b);

Atomics

Exec Spaces

atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess» a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)



: Dealing with Exectuion

for(i 1=0; i<N; i++) {
/* Loop Body V

}

ow to decide where
to execute?

:How to express that?

Don't.

PIM

L2*
1

. illt!!!!!  1

Explicitly. Describe.

=

DDR

NIC

Compilers.



: Dealing with Execution
• Default Parallel Loop

parallel_for(NyLoop", N,
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

• Requesting a latency or throughput optimized execution space

parallel_for(NyLoop", RangePolicy<LatencyoptimizedExecspace>( ,N),
KOKKOS_LAMBDA ( onst int i) { /* Loop Body */ });

• Instead of explicitly requesting, describe what the algorithm needs

• Providing hints which are statically mapped to exec spaces.
parallel_for(NyLoop", RangePolicy<>(u,N).require(Hints(BandwidthLimited,NonTemporal)),
KOKKOS_LAMBDA (const i) { /* Loop Body */ });

• Let the compiler figure out what the most optimal core is to put this.

• The compiler for example knows flops to bytes ratio (though not caching)!
parallel_for(WyLoop", Rangepolicy<AuTo>(0,N),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });



Z Dealing with Memory =

double** A = new double[N*M];
double* x = new doubl( [m];

Where to allocate?

E How to Layout?

PIM

PIM

DDR

NIC

NVRAM 1



: MemorySpaces: More than Storage

• Who can access it?

• Page migratable?

. Persistence Scope?

. Bandwidth/Latency?

view<double**,cuda::scratch
view<double**,cudaspace>
view<double**,cudauvmspace>
view<double**,cudaHostpinned
view<double**,Hostspace>
view<double**,HDF5space>

DDR

0 0 0

PileSystem



7.
Doing Data Layout =

• GEMV parallelized trivially over rows:

parallel_for("GEmv",num_rows, KOKKOS_LAMBDA
double ysum = 0.0;
for(int j= ; j<num_cols; j++)

ysum += A(i,j) * x(j);
y(i) = ysum;

}

• How to store A?

• GPUs: Column-Major

view<double**,LayoutLeft> A( ,N,M);

• CPUs: Row-Major

view<double**,LayoutRight> A( ,N,m);



: How To Expose Special Function Units? =,
, ..iiii.-...

• Easy to use for applications

• Connect with memory info

• Is the data accessible and the correct layout?

• KokkosKernels has interface with all necessary information

• Matrix in main GPU memory

• RHS vector created on the fly in scratch memory

• LHS vector in Host accessible memory

view<double",cudaspace> A = •
1

view<double*,cudaHostPinnedspace> y = /*...*/;
view<double*,cuda::scratch_memory_space> x = /*...*/;
gemv(y,A,x); /* Execute in cuda space since it can access all data. */



Key Things to Help Compilers/Runtimes =

• Encode information at compile time (as part of the type system)

• Where does data life.

• How do you access it.

• Properties of algorithms.

• Be descriptive — not prescriptive

• Say what you want to happen and give properties (see above)

• Let the compiler/runtime figure out how to use that info

• Provide graceful fallbacks and defaults

• Make it possible to provide incrementally more information



:Sparta: Production Simulation at Scale
• Stochastic PArallel Rarefied-gas Time-

accurate Analyzer

• A direct simulation Monte Carlo code

• Developers: Steve Plimpton, Stan Moore,

Michael Gallis

• Only code to have run on all of Trinity

• 3 Trillion particle simulation using

both HSW and KNL partition in a

single MPI run

• Benchmarked on 16k GPUs on Sierra

• Production runs now at 5k GPUs

• Co-Designed Kokkos::ScatterView
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7 That's Great But I Don't Trust TPLs =
■ Good News! We are working on contributing to the C++ standard!

• Executors for heterogeneous environements

• Control where and how stuff executes

• Property mechanism to provide more information

• Hierarchical executors for supporting hierarchical hardware

• MDSpan for multi-dimensional arrays with accessors

• Templated on scalar, extents, layout and accessor

basic_mdspan<double,extents<dynamic_extent, >,layout_left,basic_accessor<double»

• Extent accessors to provide typesafe info about storage place

basic_mdspan<loubM,extents< >,layout_right,memspace_accessor<Jouble,Hm»

• BLAS support in the works: point to get SpMV or GEMM accelerator support




