This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 7116C

Unclassified Unlimited Release

D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles,

D. Hollman, V. Dang
@EEReY

SAND2019-6684 C

oa aot\s)=29 J.)

ﬂ_l

I ?(1‘ o (x,ﬂ}d;

Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

” A Vision of the future
4 Memory Spaces

- Bulk non-volatile (Flash?)

- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

- SpMV and GEMM accelerator

=

Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming

models??
- GPU: CUDA, HIP, SyCL, OpenMP
- CPU: OpenMP, OpenACC
- PIM: ??

W Applications Libraries Frameworks

e — s -
. . TR
4 . L 'y

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

SNL NALU
Wind Turbine CFD

ORNL Raptor
Large Eddy Sim

Kokkos

ORNL Summit

| _ad SNL Astra
IBM Power9 / NVIDIA Volta LANL/SNL Trinity ANL Aurora ARM Architecture

Intel Haswell / Intel KNL Intel Xeon CPUs + Intel Xe Compute

U Kokkos EcoSystem B

-)
Kokkos
Tools

Science and Engineering Applications ||

Trilinos

Kokkos EcoSystem

Kokkos Kernels

Kokkos Core

[Kokkos Remote Spaces

” Kokkos Development Team e

-
= kokkos
ﬁgAlamos Argonne Vs ﬁg?igir?al %OAK RIDGE \‘0‘0 CSCS

NATIONAL LABORATORY NATIONAL LABORATORY laboratories National Laboratory AN

EST.1943

= Dedicated team with a number of staff working most of their time on Kokkos
= Main development team at Sandia in CCR

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

= Kokkos Core Abstractions e

Parallel Execution

Execution Spaces (“Where”)

- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism
Execution Patterns

- Row/Column-Maijor, Tiled, Strided - parallel_for/reduce/scan, task-spawn

Execution Policies (“How”)

- Streaming, Atomic, Restrict - Range, Team, Task-Graph

~ Kokkos Core Capabilities e

Comeept ___[Bemple

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (inti){...BODY...});
Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...
}, Sum<>(result));
Tightly Nested parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
Loops KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

Non-Tightly Nested parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
Loops ... COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });

... COMMON CODE 2 ...

N

Task Dag task_spawn(TaskTeam(scheduler, priority), KOKKOS_LAMBDA (Team team){ ... BODY });
Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);
Data Transfer deep_copy(a,b);
Atomics atomic_add(&a(i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;
Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)
— =

~ Dealing with Exectuion Gl

for(int 1=0; i<N; 1++) {
/* Loop Body */

EE -4
E—TE—
How to decide where |
fo execute? |
How to express that?

}

Don't.

=~ Dealing with Execution R

= Default Parallel Loop

parallel_for("MyLoop", N,
KOKKOS_LAMBDA (const 1int i) { /* Loop Body */ });

= Requesting a latency or throughput optimized execution space

parallel_for('MyLoop", RangePolicy<LatencyOptimizedExecSpace>(0,N),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

= |nstead of explicitly requesting, describe what the algorithm needs

= Providing hints which are statically mapped to exec spaces.

parallel_for('MyLoop", RangePolicy<>(0,N).require(Hints(BandwidthLimited,NonTemporal)),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

= Let the compiler figure out what the most optimal core is to put this.

= The compiler for example knows flops to bytes ratio (though not caching)!

parallel_for('MyLoop", RangePolicy<AuTO>(0,N),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

~ Dealing with Memory BE

double** A = new double[N*M];
double* x = new double[M];

Where to allocate?

How to Layout?

_ MemorySpaces: More than Storage @&

= Who can access it?

= Page migratable?

= Persistence Scope?
= Bandwidth/Latency?

View<double** cuda: :scratch _gefMorysP
View<double** CudaSpace>

View<double** CudauvMSpace>
View<double** CudaHostPinnedSpace
View<double** HostSpace>
View<double** ,HDF5Space>

~ Doing Data Layout W

= GEMV parallelized trivially over rows:

parallel_for("GEMV",num_rows, KOKKOS_LAMBDA (int i) {
double ysum = 0.0;
for(int j=0; j<num_cols; j++)
ysum += A(i,j) * x(3);
y(i) = ysum;
}

= How to store A?
= GPUs: Column-Major
View<double** LayoutLeft> A('A",N,M);
= CPUs: Row-Major

View<double** LayoutRight> A("A" ,N,M);

~ How To Expose Special Function Units? @,

Libraries!

= Easy to use for applications

= Connect with memory info
= |s the data accessible and the correct layout?

= KokkosKernels has interface with all necessary information
= Matrix in main GPU memory
= RHS vector created on the fly in scratch memory

= LHS vector in Host accessible memory

View<double** CudaSpace> A = /*...%/;
View<double*,CudaHostPinnedSpace> y = /*...%/;

View<double*,Cuda: :scratch_memory_space> x = /*...%/;

gemv(y,A,x); /* Execute in Cuda Space since it can access all data. */

~ Key Things to Help Compilers/Runtimes @,

= Encode information at compile time (as part of the type system)
= Where does data life.
= How do you access it.
= Properties of algorithms.
= Be descriptive — not prescriptive
= Say what you want to happen and give properties (see above)
= Let the compiler/runtime figure out how to use that info
= Provide graceful fallbacks and defaults
= Make it possible to provide incrementally more information

= Sparta: Production Simulation at Scale @&

= Stochastic PArallel Rarefied-gas Time-
accurate Analyzer SPARTA Weak Scaling
= A direct simulation Monte Carlo code

— 450 gg— —={ —]
= Developers: Steve Plimpton, Stan Moore, & %
; ; 3 350
Michael Gallis 2 300
s & 250

= Only code to have run on all of Trinity 8 200 b P —

= 3 Trillion particle simulation using E EEF —8— —o
both HSW and KNL partition in a g

single MPI run g 8 16 32 64 128 256

= Benchmarked on 16k GPUs on Sierra —S=EosEell =R=RRL —EiRe

= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView

" That’s Great But | Don’t Trust TPLs M

= Good News! We are working on contributing to the C++ standard!
= Executors for heterogeneous environements

= Control where and how stuff executes

= Property mechanism to provide more information

= Hierarchical executors for supporting hierarchical hardware
= MDSpan for multi-dimensional arrays with accessors

= Templated on scalar, extents, layout and accessor

basic_mdspan<double,extents<dynamic_extent, 8>, layout_left,basic_accessor<double>>

= Extent accessors to provide typesafe info about storage place

basic_mdspan<double,extents<8,4>, layout_right,memspace_accessor<double,HBM>>

= BLAS support in the works: point to get SpMV or GEMM accelerator support

