
aa " a otr f tim Icr2

f T(I)+ AX,O)dx +(a -a- I 4,
ao‘r

f

Viag*A

I -W
Kokkos: Are We Prepared for Extreme Heterogeneity?

Unclassified Unlimited Release

D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles,

D. Hollman, V. Dang

(1)1iWir ELM&

Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-6684 C

SAND2019-7116C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

A Vision of the future
4 Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory
- SpMV and GEMM accelerator

PIM

PIM

0 0•

111
L2*

!!!
L3

Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming
models??

- GPU: CUDA, HIP, SyCL, OpenMP
- CPU: OpenMP, OpenACC
- PIM: ??

L DDR

111
NIC

NVRAM IMP

Applications

SNL NALU
Wind Turbine CFD

ORNL Summit

.43
rt

!BCE

•

• !

SNL LAMMPS
Molecular Dynamics

IBM Power9 / NVIDIA Volta LANL/SNL Trinity
Intel Haswell / Intel KNL

Libraries Frameworks

al=

UT Uintah
Combustine

ANL Aurora
Intel Xeon CPUs + Intel Xe Compute

ORNL Raptor
Large Eddy Sim

1

ISMI*211
SNL Astra
ARM Architecture

Kokkos EcoSystem

Kokkos
Tools

Debugging

Profiling

Tuning
A

Science and Engineering Applications

Kokkos EcoSysiem

Kokkos Kernels

Linear Algebra Kernels Graph Kernels

Kokkos Corc
Parallel

Execution r Parallcl Data
Structures

Kokkos
Support

Documentalion

Tulorials

Booicamps

App support

Kokkos Remote Spaces

PGAS 10

MuitACore Maw-Core APU

49

ui

au + GPU

: Kokkos Development Team

: kokkos
- Sandia OAKt RIDGEx:4

 EST 1943

4 cscsLosAlamos Argonne I nil National
NATIONAL LABORATORY

NATIONAL t ACCRA-OR Laboratories National Laboratory

• Dedicated team with a number of staff working most of their time on Kokkos

• Main development team at Sandia in CCR

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

7.
, Kokkos Core Abstractions

All Data Structures 41
=Pi

Memory Spaces ("Where") Ill

P

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

Tlerniry .fir11ow 11
- Streaming, Atomic, Restrict

ara e xecu ion

P" Execution Spaces ("Where") 111

- CPU, GPU, Executor Mechanism
, N

xecu ion a erns

- parallel for/reduce/scan, task-spawn

xecution o icies ow

- Range, Team, Task-Graph

Kokkos Core Capabilities
ncept

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY... });

Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd +=
Sum<>(result));

Tightly Nested
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (int i, int j, int k) {...BODY...});

Non-Tightly Nested
Loops

Task Dag

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... });
... COMMON CODE 2 ...

});

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });

Data Allocation View<double", Layout, MemSpace> a("A",N,M);

Data Transfer deep_copy(a,b);

Atomics

Exec Spaces

atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess» a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)

: Dealing with Exectuion

for(i 1=0; i<N; i++) {
/* Loop Body V

}

ow to decide where
to execute?

:How to express that?

Don't.

PIM

L2*
1

. illt!!!!! 1

Explicitly. Describe.

=

DDR

NIC

Compilers.

: Dealing with Execution
• Default Parallel Loop

parallel_for(NyLoop", N,
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

• Requesting a latency or throughput optimized execution space

parallel_for(NyLoop", RangePolicy<LatencyoptimizedExecspace>(,N),
KOKKOS_LAMBDA (onst int i) { /* Loop Body */ });

• Instead of explicitly requesting, describe what the algorithm needs

• Providing hints which are statically mapped to exec spaces.
parallel_for(NyLoop", RangePolicy<>(u,N).require(Hints(BandwidthLimited,NonTemporal)),
KOKKOS_LAMBDA (const i) { /* Loop Body */ });

• Let the compiler figure out what the most optimal core is to put this.

• The compiler for example knows flops to bytes ratio (though not caching)!
parallel_for(WyLoop", Rangepolicy<AuTo>(0,N),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

Z Dealing with Memory =

double** A = new double[N*M];
double* x = new doubl([m];

Where to allocate?

E How to Layout?

PIM

PIM

DDR

NIC

NVRAM 1

: MemorySpaces: More than Storage

• Who can access it?

• Page migratable?

. Persistence Scope?

. Bandwidth/Latency?

view<double**,cuda::scratch
view<double**,cudaspace>
view<double**,cudauvmspace>
view<double**,cudaHostpinned
view<double**,Hostspace>
view<double**,HDF5space>

DDR

0 0 0

PileSystem

7.
Doing Data Layout =

• GEMV parallelized trivially over rows:

parallel_for("GEmv",num_rows, KOKKOS_LAMBDA
double ysum = 0.0;
for(int j= ; j<num_cols; j++)

ysum += A(i,j) * x(j);
y(i) = ysum;

}

• How to store A?

• GPUs: Column-Major

view<double**,LayoutLeft> A(,N,M);

• CPUs: Row-Major

view<double**,LayoutRight> A(,N,m);

: How To Expose Special Function Units? =,
, ..iiii.-...

• Easy to use for applications

• Connect with memory info

• Is the data accessible and the correct layout?

• KokkosKernels has interface with all necessary information

• Matrix in main GPU memory

• RHS vector created on the fly in scratch memory

• LHS vector in Host accessible memory

view<double",cudaspace> A = •
1

view<double*,cudaHostPinnedspace> y = /*...*/;
view<double*,cuda::scratch_memory_space> x = /*...*/;
gemv(y,A,x); /* Execute in cuda space since it can access all data. */

Key Things to Help Compilers/Runtimes =

• Encode information at compile time (as part of the type system)

• Where does data life.

• How do you access it.

• Properties of algorithms.

• Be descriptive — not prescriptive

• Say what you want to happen and give properties (see above)

• Let the compiler/runtime figure out how to use that info

• Provide graceful fallbacks and defaults

• Make it possible to provide incrementally more information

:Sparta: Production Simulation at Scale
• Stochastic PArallel Rarefied-gas Time-

accurate Analyzer

• A direct simulation Monte Carlo code

• Developers: Steve Plimpton, Stan Moore,

Michael Gallis

• Only code to have run on all of Trinity

• 3 Trillion particle simulation using

both HSW and KNL partition in a

single MPI run

• Benchmarked on 16k GPUs on Sierra

• Production runs now at 5k GPUs

• Co-Designed Kokkos::ScatterView

500

D
450

SPARTA Weak Scaling

=

cL0 400

6-0 350

z • 300
ir)
o_ 250
a)
::,) 200 AL—Ar------.........................A

E 1 5°

,t 100
a)
o_

50

0
4 8 16 32 64 128 256

—40—Haswell —Jii— KN L —0— V100

7 That's Great But I Don't Trust TPLs =
■ Good News! We are working on contributing to the C++ standard!

• Executors for heterogeneous environements

• Control where and how stuff executes

• Property mechanism to provide more information

• Hierarchical executors for supporting hierarchical hardware

• MDSpan for multi-dimensional arrays with accessors

• Templated on scalar, extents, layout and accessor

basic_mdspan<double,extents<dynamic_extent, >,layout_left,basic_accessor<double»

• Extent accessors to provide typesafe info about storage place

basic_mdspan<loubM,extents< >,layout_right,memspace_accessor<Jouble,Hm»

• BLAS support in the works: point to get SpMV or GEMM accelerator support

