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” A Vision of the future
4 Memory Spaces

- Bulk non-volatile (Flash?)

- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

- SpMV and GEMM accelerator

=

Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming

models??
- GPU: CUDA, HIP, SyCL, OpenMP
- CPU: OpenMP, OpenACC
- PIM: ??
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U Kokkos EcoSystem B

- )
Kokkos
Tools

Science and Engineering Applications ||

Trilinos

Kokkos EcoSystem

Kokkos Kernels

Kokkos Core

[ Kokkos Remote Spaces




” Kokkos Development Team e
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= Dedicated team with a number of staff working most of their time on Kokkos
= Main development team at Sandia in CCR

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter




= Kokkos Core Abstractions e

Parallel Execution

Execution Spaces (“Where”)

- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism
Execution Patterns

- Row/Column-Maijor, Tiled, Strided - parallel_for/reduce/scan, task-spawn

Execution Policies (“How”)

- Streaming, Atomic, Restrict - Range, Team, Task-Graph




~ Kokkos Core Capabilities e

Comeept ___[Bemple

Parallel Loops parallel_for( N, KOKKOS_LAMBDA (inti){...BODY...});
Parallel Reduction parallel_reduce( RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...
}, Sum<>(result));
Tightly Nested parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
Loops KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

Non-Tightly Nested  parallel_for( TeamPolicy<Schedule<Dynamic>>( N, TS ), KOKKOS_LAMBDA (Team team) {
Loops ... COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });

... COMMON CODE 2 ...

N

Task Dag task_spawn( TaskTeam( scheduler, priority), KOKKOS_LAMBDA (Team team){ ... BODY });
Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);
Data Transfer deep_copy(a,b);
Atomics atomic_add(&a(i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;
Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)
— =



~ Dealing with Exectuion Gl

for(int 1=0; i<N; 1++) {
/* Loop Body */

EE -4
E—TE—
How to decide where |
fo execute? |
How to express that?

}

Don't.




=~ Dealing with Execution R

= Default Parallel Loop

parallel_for("MyLoop", N,
KOKKOS_LAMBDA (const 1int i) { /* Loop Body */ });

= Requesting a latency or throughput optimized execution space

parallel_for('MyLoop", RangePolicy<LatencyOptimizedExecSpace>(0,N),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

= |nstead of explicitly requesting, describe what the algorithm needs

= Providing hints which are statically mapped to exec spaces.

parallel_for('MyLoop", RangePolicy<>(0,N).require(Hints(BandwidthLimited,NonTemporal)),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });

= Let the compiler figure out what the most optimal core is to put this.

= The compiler for example knows flops to bytes ratio (though not caching)!

parallel_for('MyLoop", RangePolicy<AuTO>(0,N),
KOKKOS_LAMBDA (const int i) { /* Loop Body */ });




~ Dealing with Memory BE

double** A = new double[N*M];
double* x = new double[M];

Where to allocate?

How to Layout?




_ MemorySpaces: More than Storage @&

= Who can access it?

= Page migratable?

= Persistence Scope?
= Bandwidth/Latency?

View<double** cuda: :scratch _gefMorysP
View<double** CudaSpace>

View<double** CudauvMSpace>
View<double** CudaHostPinnedSpace
View<double** HostSpace>
View<double** ,HDF5Space>




~ Doing Data Layout W

= GEMV parallelized trivially over rows:

parallel_for("GEMV",num_rows, KOKKOS_LAMBDA (int i) {
double ysum = 0.0;
for(int j=0; j<num_cols; j++)
ysum += A(i,j) * x(3);
y(i) = ysum;
}

= How to store A?
= GPUs: Column-Major
View<double** LayoutLeft> A('A",N,M);
= CPUs: Row-Major

View<double** LayoutRight> A("A" ,N,M);




~ How To Expose Special Function Units? @,

Libraries!

= Easy to use for applications

=  Connect with memory info
= |s the data accessible and the correct layout?

=  KokkosKernels has interface with all necessary information
= Matrix in main GPU memory
= RHS vector created on the fly in scratch memory

= LHS vector in Host accessible memory

View<double** CudaSpace> A = /*...%/;
View<double*,CudaHostPinnedSpace> y = /*...%/;

View<double*,Cuda: :scratch_memory_space> x = /*...%/;

gemv(y,A,x); /* Execute in Cuda Space since it can access all data. */




~ Key Things to Help Compilers/Runtimes @,

= Encode information at compile time (as part of the type system)
= Where does data life.
= How do you access it.
= Properties of algorithms.
= Be descriptive — not prescriptive
= Say what you want to happen and give properties (see above)
= Let the compiler/runtime figure out how to use that info
= Provide graceful fallbacks and defaults
= Make it possible to provide incrementally more information




= Sparta: Production Simulation at Scale @&

= Stochastic PArallel Rarefied-gas Time-
accurate Analyzer SPARTA Weak Scaling
= A direct simulation Monte Carlo code

— 450 gg— —={ —]
= Developers: Steve Plimpton, Stan Moore, & %
; ; 3 350
Michael Gallis 2 300
s & 250

= Only code to have run on all of Trinity 8 200 b P —

= 3 Trillion particle simulation using E EEF —8— —o
both HSW and KNL partition in a g

single MPI run g 8 16 32 64 128 256

= Benchmarked on 16k GPUs on Sierra —S=EosEell =R=RRL —EiRe

= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView




" That’s Great But | Don’t Trust TPLs M

= Good News! We are working on contributing to the C++ standard!
= Executors for heterogeneous environements

= Control where and how stuff executes

= Property mechanism to provide more information

= Hierarchical executors for supporting hierarchical hardware
=  MDSpan for multi-dimensional arrays with accessors

= Templated on scalar, extents, layout and accessor

basic_mdspan<double,extents<dynamic_extent, 8>, layout_left,basic_accessor<double>>

= Extent accessors to provide typesafe info about storage place

basic_mdspan<double,extents<8,4>, layout_right,memspace_accessor<double,HBM>>

=  BLAS support in the works: point to get SpMV or GEMM accelerator support







