
Enabling new capabilities for
QMC using HPC without
sacrificing developer productivity

PRESENTED BY

Luke Shulenburger
/-*N MISRkt: ENERG

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of
Energy's National Nuclear Security

Administration under contract DE-NA0003525.

SAND2019-7114C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Acknowledgements

Exascale Computing Project

QMCPACK contributors

Jeongnim Kim

Paul Kent

Ye Luo

Raymond Clay

Attila Cangi

Christian Trott

What are the current limitations of diffusion Monte Carlo in
3 practice?

Nodal surface of unknown quality
Hard problem, subject of other talks

Lack of routinely calculated observables
Needs significant focus, development of many different capabilities

Productivity difficulties for researchers
Complicated workflow
Limited statistical accuracy / computer time

Finite system size
Memory and O(N3) complexity limit calculations to -1000 electrons
For condensed matter, high symmetry!
Difficult to treat complicated defect structures or low symmetry phases

4 To reach large systems, memory demands must be reduced while
maintaining high efficiency

Have explored two options for the static
wavefunction

Periodic localized orbitals (gaussians, atom
centered splines)

Drastic memory reduction but slows code (lost
verctorization for example)

Also a combined hybrid B-spline and atom
centered wavefunction
Use a coarse spline table everywhere and augment with 1D
splines times Ylm near core

Saves about a factor of 5-10 in memory while retaining
speed

Most effective for cases where deeper core states are
represented

Or
bi
ta
l
La

pl
ac

ia
n

Or
bi
ta
l
La

pl
ac

ia
n

5

-5

-10

-15

-20

-13
0

Plane waves
Hybrid MF=1.0
Hybrid MF=0.5

Regular MF=1.0
Regular MF=0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1 .6

Plane waves
Hybrid MF=0.5

Regular MF=1.0
Regular MF=0.5

0.02 0.04 0.06 0.08 0.1

Distance from the reference carbon atom / Bohr

5 How do we currently address scaling?

Current parallelization strategy
relies on distributing walkers
among processing elements

Highly scalable algorithm, as
demonstrated on Sequoia at LLNL

Nearly perfect parallel efficiency in
moving walkers to over 1.5M cores

As calculations get larger, use more
cores and more walkers

Mo
nt

e
Ca
rl
o
M
o
v
e
s
 p
er

 s
ec
on
d
/
1
0
0
0

Scaling of throughput on Sequoia

200 400 600 800 1000 1200 1400 1600

Number of Cores / 1000

6 Increasing the number of cores in the case of large core counts

What actually happens as the calculation is scaled?

-1.97

-1.98

-1.99
-2

-2.01

-2.02

-2.03

-2.04

-2.05

-2.06
o o o o o o o o o o o

o o o o o o o o o o
o o o o o o o o o o
H N M Cr l0 h• CO GI 0

Markov chain generation

-1.97

-1.98

-1.99

-2

-2.01
CU

a)
-2.02

-2.03

-2.04

-2.05

-2.06
0

• Number of walkers x32
• Processors x 32
• Throughput x 32
• Wall time / 5
• Parallel Efficiency - 1 5%

walkers x 32

500 1000 1500

Markov chain generation

2000

Equilibration dominates

7 Best strategy is to parallelize walkers over more than a single
processing element

In QMCPACK, the code is parallelized so that the walker is the minimum unit of parallel
work

For large calculations, target is currently one walker per thread

In order to reduce population by a factor of 64, would have to be able to parallelize the
walker over 64 processing elements

Can't currently do this, but it is plausible for large enough calculations

8 While working on this, consider changing hardware landscape

Rapidly increasing number of computing elements

Stagnating or decreasing memory size per processing E
Increasingly complex and varied memory hierarchy

Changing programming models and diverse capabilities

9 Previous experience with non CPU architectures

Ken Esler led an effort to parallelize
QMCPACK for GPUs

Limited memory bandwidth between host
and accelerator meant rewriting large
sections of the code for the GPU

Small kernels were problematic, so
exposed additional parallelism by
reordering the calculation

Move all walkers at once

Significant speedup at the time,
nightmare to maintain!

20
C-BC8 (512 electrons)

Diamond (256 electrons)

Fe() (352 electrons)

Diamond (64 electrons)

gm.

lom

wo

cm.

Oecs <
kernel bIocic-

slle - - - -
_ _ _

- - VMC

— DMC

64 128
Walkers per GPU

256

Esler, Kim, Ceperely and Shulenburger, CiSE 14,
40, 2012

10 Requirements: Performance portability and ease of development

Seek a programming model where minimal code
needs to be re-written when moving to new
architectures

Don't want cuda, hip, rocm, etc ports that have to be
maintained

Simultaneously work to parallelize walkers over as
many processing elements as possible

Two strong candidates:
OpenMP 4.0 (offload)

Kokkos

Must be able to do strong scaling for large problems
and simultaneously maintain high throughput for
smaller calculations

11 I Also cut down the application: qmcpack miniapp

Determined computationally important
kernels and separated into a miniapp

Important to keep the same code
structure to stress performance
portability models

Result is at
github.com/QMCPACK/miniqmc

Others

One Body Jastrow •

Two Body Jastrow

Distance Tables

Phase Factors •

3D B-Spline

Inverse Update

• U pd ate wal kers

• Ratio/Derivative

• NLPP

• Others

0 10 20 30 40

percentage KNL BGQ

Dist. Tables

3D B-Spline

Inv. Update

26.9 15.7

12.4 10.9

22.0 32.3

1: for MC generation = 1 • • - M do
2: for walker = 1 • • • Nu, do
3:

4:

5:

6:

7:

8:

let R = Irl • • • rN1
for particle i = 1 • • • N do

set ri = ri

let R = fri ...ri . . . rril
ratio p = ‘1, (R) I 41 T (R-7
(One Body, Two Body, 3D B-Spline)

klerivatives ViTTI Va2.
(One Body, Two Body, 3D B-Spline)

9: if r rl is accepted then
10:

11:

12:
13:

(Inverse Update)
end if

end forIparticlel
!mai energy ELME
(One Body, Two Body, 3D B-Spline)

14: reweight and branch walkers
15: end for{ walker}
16: update Ey and load balance
17: end for{MC generation}

12 Current architectures favor different parallelization schemes

GPUs require extreme levels of parallelization
Where possible, parallelize over electrons and walkers simultaneously

Memory is very limited, also transfers are slow

CPUs require care with vectorization
Often factor of 2-4 when vectorizable

Memory layout is crucial

13 Kokkos allows all of these to be handled in the same framework

Flexible data container

• Multidimensional data container: view
view<datatype***, layout, memorySpace,
>• • •

• Encapsulates where the data lives and its
layout

• Avoid expensive implicit copy operations,
only pointers are copied when view is
assigned

• Makes it easy to move things around

• Can automatically change data layout
depending on type of target device

Abstractions for parallel operations

• When operating in parallel, take
advantage of generic constructs:
parallel_for, parallel_reduce, parallel_scan

• Easy to specify hierarchical parallelism
through execution policies (who is doing the
parallel_for)

• Works with the data abstraction to make
memory accesses favorable for the
architecture

14 Process

1. Change data structures to Views

2. Rewrite OpenMP parallelism in terms of parallel for and parallel reduce

3. Express all remaining algorithms in parallel_for regions to avoid data transfer

4. For CPUs, most algorithms use a hierarchical scheme: Policy<nwalkers, 1, vector_size>

5. For GPUs, most algorithms use a flattened scheme: Policy<nwalkers*nelectrons>

6. For GPUs, needed to free up as much memory as possible
Was storing distance table between all electrons and ions, now computing on fly

15 I Results for small test problem

768 electrons
Wa

lk
er

 S
te
ps
 p
er
 S
e
c
o
n
d

120

100

80

60

40

20

0

64 atoms

'71:0(.000C-CX\Mr(OCOO cl-CCX.07r00C.00\PCh '71-00C9C\10000 71-COCONCOCOC\171-C.0
C V.f)C071-CO ,—C7COCON-'71- ,—CO•tCOCIDN C071-0:3)0)CON--

1—C \IC7d-11, ,—C\11-0 ,—CY) 1-0)1-0

Population Size

Wa
lk

er
 S
te
ps
 p
er
 S
e
c
o
n
d

120

100

80

60

40

20

0
'I' CO CO CO CO cv 7J- co co o

co-1- co
c\I •d-

64 atoms

-1- co co co co cm 7r co co c.
c\I cm co -71-

,—c\I co •d-

Population Size

'71- CO CO
COCOCOCDCOO

co in

1 6 I Results for large problems

6144 electrons

Zr)
Ts 25

o

cr)
_0 20

z

(7; 15

o

1 0
o
0_

CD

CCI

-0

o

a)

512 atoms
Power 9

Arm KNL

Determin r
Jastr

Single-Particle Orbi I

Skylake Xeon

1- 71- CO CD OD CD 71- CO CO 71- 71- CO CO CV 71- 00 CO CV CO CO
r- 1-0 1- co -,- co ,-- CO 71- (-.5)

Population Size

Tzs
4

o

'cr, 3.5

E
_0

3

("3 2.5

2

0_ 1.5
o_
a)

-0 0.5

a) 0

512 atoms

Determinant
Jastrow

Single-Particle Orbitals

Power8 + P100 Xeon + P100 Power9 + V100

IMM

111
71- CO 71- 1- CO CV 71- CO 71- 1- CO CV 7t- CO 7t 1- CO CV

N N 71- r N 71- r N N 71-

Population Size

17 It appears possible to achieve performance portability within a
single code base

Can use the same framework to achieve parallel algorithms that are suitable for both
GPUs and CPUs

Work of this nature can allow codes to take advantage of new classes of hardware
without requiring developers to learn new frameworks each time

