This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 7114C

Enabling new capabilities for
QMC using HPC without
sacrificing developer productivity

Luke Shulenburge

- — - — (@ ENERGY NS4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



2 I Acknowledgements

= Exascale Computing Project
= QMCPACK contributors

= Jeongnim Kim

= Paul Kent

= Ye Luo

= Raymond Clay

= Attila Cangi

= Christian Trott

/'..".“*\
= A=
=

EXARSCALE COMPUTNG PROJECT



What are the current limitations of diffusion Monte Carlo in
3 I practice?

Nodal surface of unknown quality
- Hard problem, subject of other talks

Lack of routinely calculated observables
> Needs significant focus, development of many different capabilities

Productivity difficulties for researchers
- Complicated workflow
> Limited statistical accuracy / computer time

Finite system size
> Memory and O(N3) complexity limit calculations to ~1000 electrons
- For condensed matter, high symmetry!
o Difficult to treat complicated defect structures or low symmetry phases



4+ | To reach large systems, memory demands must be reduced while
maintaining high efficiency

Have explored two options for the static Z _
wavefunction &k
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How do we currently address scaling?

Current parallelization strategy Scaling of throughput on Sequoia

relies on distributing walkers 140
among processing elements
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Highly scalable algorithm, as 100 |

demonstrated on Sequoia at LLNL

> Nearly perfect parallel efficiency in
moving walkers to over 1.5M cores
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As calculations get larger, use more
cores and more walkers
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Increasing the number of cores in the case of large core counts

What actually happens as the calculation 1s scaled?
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* Number of walkers x32

* Processors x 32

* Throughput x 32

* Wall time / 5

« Parallel Efficiency ~ 15%

walkérs X 32 .
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Equilibration dominates
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Best strategy is to parallelize walkers over more than a single
processing element

In QMCPACK, the code is parallelized so that the walker is the minimum unit of parallel

work
For large calculations, target is currently one walker per thread

In order to reduce population by a factor of 64, would have to be able to parallelize the
walker over 64 processing elements

- Can'’t currently do this, but it is plausible for large enough calculations
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s I While working on this, consider changing hardware landscape

= Rapidly increasing number of computing elements

= Stagnating or decreasing memory size per processing €
= Increasingly complex and varied memory hierarchy

= Changing programming models and diverse capabilities




o I Previous experience with non CPU architectures

» Ken Esler led an effort to parallelize
QMCPACK for GPUs - CBCB (512 electrons)

Diamond (256 electrons)
FeO (352 electrons)
Diamond ( 64 electrons)

* Limited memory bandwidth between host
and accelerator meant rewriting large
sections of the code for the GPU
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» Small kernels were problematic, so
exposed additional parallelism by
reordering the calculation

* Move all walkers at once

Speedup w.r.t. quad-core Xeon E5410

» Significant speedup at the time, s | — DMC

: : : 64 128 256
nightmare to maintain! Walkers per GPU

Esler, Kim, Ceperely and Shulenburger, CiSE 14,
40, 2012



10 I Requirements: Performance portability and ease of development

Seek a programming model where minimal code
needs to be re-written when moving to new
architectures

- Don’t want cuda, hip, rocm, etc ports that have to be
maintained

Simultaneously work to parallelize walkers over as
many processing elements as possible

Two strong candidates:
> OpenMP 4.0 (offload)
- Kokkos

Must be able to do strong scaling for large problems
and simultaneously maintain high throughput for
smaller calculations



Also cut down the application: gmcpack miniapp

Determined computationally important
kernels and separated into a miniapp

Important to keep the same code

1: for MC generation = 1--- M do

structure to stress performance 2 forl we;licer{= 1- --Nw}do

— 3 ethh=1{r;...rn
portability models percentage 4 forparticlei =1--- N do

: 5: tr, =r; + 0
Result is at ) o _"{Ij; :
github.com/QMCPACK/minigmc _ - _

Others TN Dist. Tables 26.9 15.7 (One Body, Two Body, 3D B-Spline)
s derivatives V,0y, V3T, |
One Body Jastrow [l (One Body, Two Body, 3D B-Spline)
: Ny
3D B-Spline 12 4 10.9 9: if r — r’ is accepted then
Two Body Jastrow NN . )pqate wakers P 10: update state of a walker |
: | .. Inverse Update
Distance Tables | INNENN * Eit:;/Deﬂvatlve i1 em(, o paate)
| . .
Phase Factors [l < dtrers 12: end for{particle}
Inv. Update  22.0 32.3 1 local energy £, = | i
3D B-Spline 1IN (One Body, Two Body, 3D B-Spline)
14: reweight and branch walkers
Inverse Update GGG 15:  end for{walker}
16:  update E7 and load balance
0 10 20 30 40 17: end for{MC generation}



12 I Current architectures favor different parallelization schemes

GPUs require extreme levels of parallelization
> Where possible, parallelize over electrons and walkers simultaneously
- Memory is very limited, also transfers are slow

CPUs require care with vectorization
- Often factor of 2-4 when vectorizable

- Memory layout is crucial



13 I Kokkos allows all of these to be handled in the same framework

Flexible data container

e Multidimensional data container: view

view<datatype***, layout, memorySpace,
L

e Encapsulates where the data lives and its
layout

¢ Avoid expensive implicit copy operations,
only pointers are copied when view is
assigned

e Makes it easy to move things around

e Can automatically change data layout
depending on type of target device

Abstractions for parallel operations

e \When operating in parallel, take
advantage of generic constructs:
parallel_for, parallel _reduce, parallel _scan

e Easy to specify hierarchical parallelism
through execution policies (who is doing the
parallel_for)

e \Works with the data abstraction to make
memory accesses favorable for the
architecture



14 | Process

1. Change data structures to Views

2. Rewrite OpenMP parallelism in terms of parallel_for and parallel _reduce

3. Express all remaining algorithms in parallel_for regions to avoid data transfer

4. For CPUs, most algorithms use a hierarchical scheme: Policy<nwalkers, 1, vector_size>
5. For GPUs, most algorithms use a flattened scheme: Policy<nwalkers*nelectrons>

6. For GPUs, needed to free up as much memory as possible
- Was storing distance table between all electrons and ions, now computing on fly



15 I Results for small test problem

768 electrons

64 atoms 64 atoms
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Results for large problems

6144 electrons
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It appears possible to achieve performance portability within a
single code base

Can use the same framework to achieve parallel algorithms that are suitable for both
GPUs and CPUs

Work of this nature can allow codes to take advantage of new classes of hardware
without requiring developers to learn new frameworks each time



