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What are the current limitations of diffusion Monte Carlo in
3 practice?

Nodal surface of unknown quality
Hard problem, subject of other talks

Lack of routinely calculated observables
Needs significant focus, development of many different capabilities

Productivity difficulties for researchers
Complicated workflow
Limited statistical accuracy / computer time

Finite system size
Memory and O(N3) complexity limit calculations to -1000 electrons
For condensed matter, high symmetry!
Difficult to treat complicated defect structures or low symmetry phases



4 To reach large systems, memory demands must be reduced while
maintaining high efficiency

Have explored two options for the static
wavefunction

Periodic localized orbitals (gaussians, atom
centered splines)

Drastic memory reduction but slows code (lost
verctorization for example)

Also a combined hybrid B-spline and atom
centered wavefunction
Use a coarse spline table everywhere and augment with 1D
splines times Ylm near core

Saves about a factor of 5-10 in memory while retaining
speed

Most effective for cases where deeper core states are
represented
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5 How do we currently address scaling?

Current parallelization strategy
relies on distributing walkers
among processing elements

Highly scalable algorithm, as
demonstrated on Sequoia at LLNL

Nearly perfect parallel efficiency in
moving walkers to over 1.5M cores

As calculations get larger, use more
cores and more walkers
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6 Increasing the number of cores in the case of large core counts

What actually happens as the calculation is scaled?
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7 Best strategy is to parallelize walkers over more than a single
processing element

In QMCPACK, the code is parallelized so that the walker is the minimum unit of parallel
work

For large calculations, target is currently one walker per thread

In order to reduce population by a factor of 64, would have to be able to parallelize the
walker over 64 processing elements

Can't currently do this, but it is plausible for large enough calculations



8 While working on this, consider changing hardware landscape

Rapidly increasing number of computing elements

Stagnating or decreasing memory size per processing E
Increasingly complex and varied memory hierarchy

Changing programming models and diverse capabilities



9 Previous experience with non CPU architectures

Ken Esler led an effort to parallelize
QMCPACK for GPUs

Limited memory bandwidth between host
and accelerator meant rewriting large
sections of the code for the GPU

Small kernels were problematic, so
exposed additional parallelism by
reordering the calculation

Move all walkers at once

Significant speedup at the time,
nightmare to maintain!
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10 Requirements: Performance portability and ease of development

Seek a programming model where minimal code
needs to be re-written when moving to new
architectures

Don't want cuda, hip, rocm, etc ports that have to be
maintained

Simultaneously work to parallelize walkers over as
many processing elements as possible

Two strong candidates:
OpenMP 4.0 (offload)

Kokkos

Must be able to do strong scaling for large problems
and simultaneously maintain high throughput for
smaller calculations



11 I Also cut down the application: qmcpack miniapp

Determined computationally important
kernels and separated into a miniapp

Important to keep the same code
structure to stress performance
portability models

Result is at
github.com/QMCPACK/miniqmc
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12 Current architectures favor different parallelization schemes

GPUs require extreme levels of parallelization
Where possible, parallelize over electrons and walkers simultaneously

Memory is very limited, also transfers are slow

CPUs require care with vectorization
Often factor of 2-4 when vectorizable

Memory layout is crucial



13 Kokkos allows all of these to be handled in the same framework

Flexible data container

• Multidimensional data container: view
view<datatype***, layout, memorySpace,
>• • •

• Encapsulates where the data lives and its
layout

• Avoid expensive implicit copy operations,
only pointers are copied when view is
assigned

• Makes it easy to move things around

• Can automatically change data layout
depending on type of target device

Abstractions for parallel operations

• When operating in parallel, take
advantage of generic constructs:
parallel_for, parallel_reduce, parallel_scan

• Easy to specify hierarchical parallelism
through execution policies (who is doing the
parallel_for)

• Works with the data abstraction to make
memory accesses favorable for the
architecture



14 Process

1. Change data structures to Views

2. Rewrite OpenMP parallelism in terms of parallel for and parallel reduce

3. Express all remaining algorithms in parallel_for regions to avoid data transfer

4. For CPUs, most algorithms use a hierarchical scheme: Policy<nwalkers, 1, vector_size>

5. For GPUs, most algorithms use a flattened scheme: Policy<nwalkers*nelectrons>

6. For GPUs, needed to free up as much memory as possible
Was storing distance table between all electrons and ions, now computing on fly



15 I Results for small test problem
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1 6 I Results for large problems
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17 It appears possible to achieve performance portability within a
single code base

Can use the same framework to achieve parallel algorithms that are suitable for both
GPUs and CPUs

Work of this nature can allow codes to take advantage of new classes of hardware
without requiring developers to learn new frameworks each time


