
BenchloT: A Security Benchmark for
The Internet of Things

Naif Almakhdhub, Abraham Clements, Mathias Payer, and Saurabh Bagchi

PURDUE EFT'. 1-1 4S- L-

UNIVERSITY

-ligk

47. hexhive

SAND2019-7112C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Internet of Things

• The number of loT devices is expected to reach 20 billion by 2020.

• Many will be microcontroller based systems (loT-pCs).
• Run directly on the hardware.

• Can be with/without an OS (bare-metal).

• Direct access to peripherals and processor.

• Examples:
• WiFi System on Chip

• Cyber-physical systems

• UAVs

77170

Aft) C 3
Ar

irt INTERNETo(

elAft
• •

2

Internet of Things

• In 2016, one of the largest DDoS attack to date was caused
by loT devices[1].

Eli8>
xsF .0 .

Eli8)

.888: x8i8 x888. .d8SB :Mc
8888-'888X ?8881- .R1i8u ='8888f8888r us888u.
X888 888X '888> "888E 4888>'88- .iga8 '888-8- "8-88E
X888 888X '888> 888E 4888> ' 9888 9888 888E
X888 888X '888> 888E 4888> 9888 9888 888E
7(888 888X '888> 888E .d888L .+ 988M 988S 888E
-*88%--*88- '888! 888& --8888*- 9888 9888 888&

R888- -Y- -8E2*--888- R888-

• In 2017, Google's Project Zero used a vulnerable WiFi SoC to gain
control of the application processor on smart phones[2].

[1] https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
[2] https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi 4.html

loT-pCs Challenges

Desktop

Stack

Heap

Data

Code

I

I
I

I
Ox08999555

I

I
I

I
• Virtual memory i • Physical memory Ox08000000

Ox08022222 • MMU I ' MPU
• Large (GB) I ' MBs of Flash
• Essential defenses KBs of RANIi•

(e.g., DEP)
I :

No DEP
Ox02050000

Ox081311111 No stack cookies
I
I
I

Ox081DIDID000
i Ox02000000

loT-pCs

Code

Stack

Heap

Data

Evaluation in Current loT Defenses

• Multiple defenses have been proposed.
• TyTan[DAC15], TrustLite[EurSysl4],
C-FLAT [CCS16], nesCheck[AsiaCCS17],
SCFP[EuroS&P18], LiteHAX[ICCAD18]
CFI CaRE [RAID17], ACES[SEC18],
MINION [NDSS18], EPDXY [S&P17]

• How are they evaluated?
• Ad-hoc evaluation.

Defense

TyTa n

Evaluation Type

Benchmark Case Study

✓

TrustLite ✓

C-FLAT ✓

nesCheck ✓

SCFP Dhrystone[1] ✓

LiteHAX CoreMark[2] ✓

CFI CaRE Dhrystone[1] ✓

ACES ✓

Minion ✓

EPDXY BEEBS[3] ✓

[1] R. P. Weicker, "Dhrystone: a synthetic systems programming benchmark," Communications of the ACM, vol. 27, no. 10, pp. 1013-1030, 1984
[2] EEMBC, "Coremark - industry-standard benchmarks for embedded systems," http://www.eembc.org/coremark.
[3] J. Pallister, S. J. Hollis, and J. Bennett, "BEEBS: open benchmarks for energy measurements on embedded platforms," CoRR, vol. abs/1308.5174,
2013.[Online]. Available: http://arxiv.org/abs/1308.5174

loT-pCs Evaluation (Ideally)

Defense Mechanism A

--\

Benchmark
foo

IIIIIIIIIII.

+
IP A standardized

Arir software application
i.

0....--
- - -

A bi
Evaluation
M etri cs

a
•••

loT-pCs Evaluation (Reality)

C2
Defense Mechanism A

Benchmark
foo

• Different benchmarks
• Different Metrics

A's
Evaluation
Metrics

•

•••
••

•••••••••
"'eft.

Defense Mechanism B

Benchmark
bar

xx a

B's
Evaluation
Metrics

• Comparison is not feasible
• Evaluation is limited and tedious

Why not use a benchmark?

• Current benchmarks are rigid and simplistic.
• Many are just one file with simple application.

• Metrics are limited and cumbersome to collect.

• Hardware dependent.

• Do not use peripherals.

• No network connectivity.

"VENIMIlr
4611111r

=El

1111A 9015150) A WO: 50000) A

f

11510 606 usiatv

• -23 ta

125 m51

-

Proposed solution: BenchloT

• BenchloT benchmarks and evaluation framework.

• An extensible, portable evaluation framework.
• A software based approach.

• Applicable to other benchmarks.

• A realistic and portable set of benchmarks.
• Works for both with/without an OS.

• Deterministic execution of external events.

• Targeted Architecture: ARMv7-M (Cortex-M3,4, and 7 processors).

Comparison Between BenchloT and Other Benchmarks

Sense Compute Actuate

BEEBS

Network
Connectivity

Peripherals

✓

Dhrystone ✓

CoreMark ✓

loTMark
Partially

(Bluetooth only)
Only I2C

SecureMark ✓

BenchloT ✓ ✓ ✓ ✓ ✓

BenchloT: Overview

User
Configuration files

ElBenchmark
Binary

t

r

Evaluation Framework

Run benchmark on Collect
board dynamic metrics

Compile &
link

Parse the
ben chmark binary

1
1
1
1
L

t

BenchloT
Benchmark

1
1
I

Collect
static metrics

r
Metric collector
runtime library

1 4- Can use a different benchmark

.1

Results
file

BenchloT design aspects : (1) Hardware agnostic

• Applications often depend on the underlying vendor & board.
• Memory is mapped differently on each board.

• Peripherals are different across boards.

• For Operating systems:
• Mbed OS(C++)

—[Portable

{Vendor & board dependent

Hardware -wC

Application

Application

HAL Library
(Hardware Abstraction Layer)

CMSIS
(Cortex Microcontroller Software Interface Standard)

MCU Registers

12

BenchloT design aspects : (2) Reproducibility

• Applications are event driven.
• Example: User enters a pin.

• Inconsistent (i.e., timing).

• Solution: trigger interrupt from software.
• Deterministic timing.

• Allows controlling the benchmarking dataset.

13

BenchloT design aspects : (2) Reproducibility

Normal application

/* Pseudocode */

1. void benchmark (void) {

2. do some computation();

3 ...

4 ...

5 wait_ for_ user input(); Is t
6. read user input();

7. ...

8.

9. }

his deterministic? deterministic

BenchloT

Pseudocode */

. void benchmark (void) {

2. do some computation();

3.

,*
• • •

• • •

trigger_interrupt();

• • •

read user input();

• • •

BenchloT design aspects : (3) Evaluation

• Independent form vendor specific hardware.
• Software approach.

• Requirement: Data Watchpoint and Trace unit (DWT).

• Automated, finer grained metrics.

• Evaluation methods:
• Collection of scripts for static metrics.

• A statically linked runtime library: Metric collector 4 dynamic.

• A debugger (i.e., GDB with python scripting) 4 dynamic.

-.111111111h

4-0
GDB client
(BenchloT)

OpenOCD
(GDB server)

loT-pCs

15

BenchloT design aspects : (4) Metrics

: Static metric

: Dynamic metric
Secu rity

,
Total

privileged cycles i
,

Privileged
, Thread cycles i

SVC cycles

Max Data
region ratio

r Max Code
_rlgjon ratio

•

DEP
 i

1 ROP resiliencl

of indirect calls

Performance

& Energy

Total runtime

CPU sleep
cycles

‘.

\

Initialization
cycles

)

Initialization
cycles

Memory

Stack+Heap
usage

Total RAM usage

Total Flash
usage

16

BenchloT design aspects : (5) Benchmarks

Benchmark

Smart Light

Smart Thermostat

Smart-locker

Firmware Updater

Connected Display

Sense

Task Type

Compute Actuate
Peripheral

s(N(N(Low-power Timer, GPIO,
Real-time clock

s(N(N(ADC, Display, GPIO, uSD card

N(s(Serial (UART),Display, uSD
Card 1 Real-time clock

N(N(Flash in-application
programming

s(s(Display, uSD Card

• Boards without non-common peripherals can still run the benchmark.

I 7

BenchloT Evaluation: Defense Mechanisms

ARM's Mbed-pVisor

sci)

0 Application
5

code

pVisor

OS

• A hypervisor that enforces the
principle of least privilege.

Remote Attestation
(RA)

25ms
110.

Hashed code
block

• Verifies the integrity of the code
present on the device.

• Uses a real-time task that runs
in a separate thread.

• Isolates its code in a secure
privileged region.

Data Integrity
(DI)

Sensitive

Data

• Isolates sensitive data to a
secure privileged region.

• Disables the secure region after
the data is accessed.

1 8

BenchloT Evaluation: Defense Mechanisms

• The goal is to demonstrate BenchloT effectiveness in evaluation.
• It not the goal to propose a new defense mechanism.

• ARM's Mbed-pVisor and Remote Attestation (RA) require an OS .

• Data Integrity (DI) is applicable for Bare-Metal (BM) and OS benchmarks.

BenchloT Evaluation: Defense Mechanisms

ARM's Mbed-pVisor

• Comparable
• Evaluation is automated

and extensible.

+

r

Remote Attestation
(RA)

E
BenchloT

Benchmarks

IIIIIIIIII. **
iv

BenchloT

I.
Evaluation Framwork

1

Data Integrity
(Dl)

ARM's Mbed-pVisor
Evaluation

RA
Evaluation

l

+
DI

Evaluation

20

Performance Results

20

Number of cycles in r coco Tr CO 03

(Billions/Millions) csTr 6 .4 0,

• 0
O

(I)

›.1
—20

o

CD
x —40
ILI

—60

—80

Ct3 03 0
esi VD tO 0

1.4 re;

CO 03 CO CCI
ts.

.rim

CO 03
03 03 CO ct

•

CO 030
et 44 et 0

 J

MI= Mbed-uVisor

IMMI RA (OS)

- DI (OS)

DI (BM)

Evaluated without
the display peripheral

e6 eS'cAN•riz", cON c.)\-‘4.0
F~v66‘.— a~s \OC c4c\,(\z'<coc'N-3

oe'cs

2 1

60

40

20

Sleep cycles Results

—20

D. —40 -a)

tr)
—60

—80

—100

o . o o o
o oo 6

Tr .1. Iff

Percentage of total runtime cycles

c5(c\2‘<co4ct
ti

'Oe"\

uVisor disables
sleep cycles

adverse effect
on energy

22

Measurement Overhead

5

OM%

(*)

." 4 -
-a
fa
a)

> 3
CI
4-)

a)

a) 2 -
L.

U1

1

o

0 0

I 0 C

O 0

I 0 C

O 0

I 0 C

O 0

I 0 C

O 0

I 0 C

O 0

I 0 C

O 0

Metric collector4 1.2%

I 0 0

O 0

I 0 0

O 0

I 0 0

O 0 •

I 0 0

r"

Mbed-uVisor

I= RA (OS)

DI (OS)

DI (BM)

0 0

D 0

0 0

D O C

0 0

D 0

0 0

D 0

0 0

D 0

0 0

D 0

Percentage of total runtime cycles

co:'`osNo-ret

23

Privileged Execution Minimization Results

• Overhead
140

120
••••••

4)
0

tn
w
u

-0 80

.2 60

0.

0

Lower
privileged
execution

20

Better
Security

-

as % of the insecure baseline application 1=1 Mbed-uVisor
1/ 1 RA (OS)

11 DI (05)

DI (BM)

e e
i it!
l• .41 9

77T5T:1

0 0

/ 0 0

o I

/ 0 o

0 0 I

00

/0 0 I
O 0 0

0 0

/
0 0
0 0 I
0 0

0 0 I

O 0

0 0 I

O 0

0 0

O 0

0 0 I

O 0

0 0 I

0 0

0 0 I

O 0

0 0 I

O 0

0 0 I

O 0

0 0 I

e

a

/171111/4 0 c
o o
/ o c

o o
/./ o c

o 0
r o c

o 0
/4 0 c

o o
/) o c

o 0
/ o c

o o
/ o c

o 0
/) o c

0 0
,/,4 o c

o 0
r 0 c

o o

.i) /
.) o c
o o

4:91r o c
o o

') o c
o 0

') o c

• e
t's!

O 0 0

0 0

0 o I

O 0

0 o I

0 0

0 o

O 0

/0 0 I

O o

/0 o I

O o

0 0 I

O o

0 o I

O o

0 0 I

O 0

0 0 I

O 0

/0 o

0 o

/0 o I

0 0

/0 o I

O 0

":„D /0 0 I
C‘fo

O 0

0 0 I
CO-

Cr/
0 0

0 0 I

0 0

e
'AI in ei
0 "I

,Prwoo
0 C

0 0

0

/0 0

0

0 0

0 C

0 0

0

0 0

0 C

0 0

0 CT

/0 0

0 C

0 0

0 C

/0 0

0 0___]

0 0

0 C

/40 0

8?, 0

rn 0 0

03
0

0 0

0 C

/0 0

P

c4c\ Sv c\t_e•<\c\ \as;co 9. \\q \o
‘SC' d\`'

Percentage of total runtime cycles

/

0 0

o

0 0

o ,

O 0

o

O 0

0

O 0

O ,

0 0

0 I

0 0

0

0 0

0

0 0

0

0 0

O I

O 0

O I

0 0

O I

0 0

0 I

0 0

0

0 0

0 I

1
•

Almost the entire
application runs
as privileged

for all defenses
Except uVisor

Privileged Execution Minimization Results

• Overhead

Lower
privileged
execution

Better
Security

140 -

20

as % of the insecure baseline application

e g e e
i ri 6

oO. e ri
IN 6 6

r Ale •4411cim 09 r •
C:101111.

0 C

O 0

3 0 C

/ 0 0

o C

O 0

0 0

A

0 0
0 C

0 0

) 0 C

0 0

) 0 C

0 0

) 0 C

0 0

) 0 C

0 0

) 0 C

0 0

) 0 C

0 0

) 0 C

0 0

) 0 C

0 °cal

) 0

0 0

0 0 r

0 0

0 0

/ 0 0

0 0 r

/ 0 0

0 0 r

/ 0 0

0 0 r

/ 0 0

0 0 r

/ 0 0

0 0 r

0 0

0 0 r

0 0

0 0 r

0 0

0 o r

o 0

0 0

0 0

) 0

0 0

///) 0

0 0

0

0 0

/') 0

0 0

/ 0

0 0

/ 0

0 0

/ 0 C

/
000c_H

0 0

/
//) 0 C

0 0 -

//) 0 C

-0 0

//) 0 C

0 0

//) 0 C

0 0 --

0 o c
0 0

0 /) c—
O 0 0
o ///) o
,-1, /1.0

o

o
o o
o
o o

///o o
o o

Mbed-uVisor
.1 RA (05) Almost the entire

1W-DI DI (OS)

I= DI (BM) application runs

0 0 r

0 0

0 0 r

0 0

/0 0 r

0 0

0 0 r

0 0

0 0

0 0

0 0 r

0 0

0 0 r

0 0

0 0 r

0 0

oo-
o o
oo-
o

0 0 0
7 40 0

PIPIP
) o c
o o
) o c
o o
o c
o o
o c
o 0
o c
o o
o c
o o
o c
0 0
o c
o 0
o c
o o
o c
o o

//) o c
o o
) o c
o o

0
) o

O 007, A 0 c

Percentage of total runtime cycles

as privileged
for all defenses
Except uVisor

uVisor is
the most

effective defense
in reducing

privileged execution

25

Memory Isolation and Code Injection Results

Memory Isolation and
Code injection Metrics

Max code
Reg. ratio

Max data
Reg. ratio

DEP

M bed-uVisor 1.0 1.0 x

Remote Attestation (OS) 0.99 1.0 ✓

Data Integrity (OS) 1.0 0.99 x

Data Integrity (BM) 1.0 0.99 x

Code Reuse Protection Results

• Number tvf gadgets.

40
oft.

113
ai 30
.0
L

o
VI 20•ia

En

131
p. 10

O

Mbed-uVisor

NM RA (05)

INN DI (OS)

DI (BM)

I he

uVisor and remote
attestation add
more code

larger attack space

1-1 r..he cm M he 1-1 01_!

LIE

Ihe
H I

o he mi 1'4 In H
.-1 1.4

z' a

co:cO
he
O
tc;

O

6,436 e:‹c
5.C\ \-\'(-

9CP\OC\\z1

Overhead as % over baseline
cfi\zcx‘ e.o

27

40

30

Memory Usage Results

• Size in KB

MN Mbed-uVisor

ME RA (OS)

ME DI (OS)

DI (BM)

—30-

-40

•
co

co he
he 0 03

I
15

co 0;
m Do co

fliim is1.4e.hd.

3e
CO °, - CO CO
ir..w.u.ar
‘1̀) rn V3 0• c.,to et

01 2 f g-1 1-1
N Ch

/
r.1
/

N 14

CO

m I

CO I
3e 03 CO

CO up 5eCO r...
,,; le - I.. n . pA . 1.1 . : oh N. 03 CO
 --r or •ii 03. my myo. m. •11

' ,,,1" CO C0 I

"I , h 0 m 1-1 N 1' ri 03 l'••
ri

iirtli u3 co
.1 1-I
r-I u-I

1-1

/

CO al
1.--- d•
r-I ri

6 r`Z
L/1 N
ri rl

co,

uVisor and remote
attestation add
more code

Higher overhead

(NO 5.C\
a<c
\N\-'(\e

C
o t•
6\59

,

Overhead as % over baseline
c•C,<3\<cOO't

Oe'c'

28

Memory Usage Results

140

• Size in kt
e 100 -
%NO

R
A
M
 O
v
e
r
h
e
a
d

80

60

40

20

0

uVisor and remote attestation add
more global data or threads

CO

it1

Higher overhead 74;

Mbed-uVisor

RA (OS)

DI (05)

DBML

co

O

co

Overhead as % over baseline
c4c\fo 'c?'

29

Energy Consumption Results

30

25 -

20

15

10

(a) Power Overhead (%)

0
.
1
7
8
m
W

3
E

Mbed-uVisor

II= RA (OS)

M= DI (05)

- DI (BM)

,mm E r,

4

50

e-
"'Cad,ase:(

vcc\6
44
ice d. 44 c\

.5(3 C., ‘,03‘

40 -

30 -

20

10 -

—10 -

—20 -

—30

—40 -

—50 -

—60 -

—70 -

—80

—90 -

—100

(b) Energy Overhead (%)

E

• •N

N

EEEEoat, m
rnmin m
NNNNj

L I

All defenses had
modest runtime

overhead

uVisor had
no sleep cycles

titi

20% energy overhead

cc ecia6
e

66
cc\Lec 2C's 413,(C\ cc 'c
\o cc o0 0(co.° \z'''

w:No

‘).9 6\59

Overhead as % over baseline

30

BenchloT: Summary

• Benchmark suite of five realistic loT applications.
• Demonstrates network connectivity, sense, compute, and actuate characteristics.

• Applies to systems with/without an OS.

• Evaluation framework:
• Covers security, performance, memory usage, and energy consumption.

• Automated and extensible.

• Evaluation insights:
• Defenses can have similar runtime overhead, but a large difference

in energy consumption.

• Open source:
• https://github.com/embedded-sec/BenchloT

31

Thank you!

Backup Slides

Comparison Between BenchloT and Other Benchmarks

Sense Compute Actuate

BEEBS

Network
Connectivity

Peripherals

✓

Dhrystone ✓

CoreMark ✓

loTMark
Partially

(Bluetooth only)
Only I2C

SecureMark ✓

BenchloT ✓ ✓ ✓ ✓ ✓

Evaluation in Current loT Defenses

Defenses Evaluation T3rpe
Benchmark Case Study

TyTan [8]
TnistLite [9]
C-FLAT [10] %.(
nesCheck [111
SCFP [12] Dhrystone [7]
LiteHAX [131 CoreMark [6]
CFI CaRE [14] Dhrystone [7]
ACES [15]
Minion [16]
EPDXY [17] BEEBS [4j

Metric collector measurements

• With BenchloT
Vector table offset

Vector table

A Button handler .0
Looked up
by hardware

Old vector
table Offset

/* Pseudocode 1

1 void BenchIoTTrampoline(void){

2. lookup_exception_number();

3. handle stack and LR value();

4. Start_measurement();

5. execute original exception();

6. end measurement();

7.

8. }

Initial Stack pointer
•••

BenchloT Trampoline
•••

BenchloT Trampoline
BenchloT Trampoline
BenchloT Trampoline

•••
BenchloT Trampoline
Initial Stack pointer

•••
SVCaII

•••
SysTick
!ROO
IM)1

•••
IRQn

:Start measurement and :
redirect execution to
' riginal handler

End measurement and :
return from handler :

Benchmarks Reproducibility

• Example: reading temperature

/* Pseudocode

1. void benchmark temperature handler(void){

2.

3. // If not blocking,

4. // fltulate real execution

5 read actual temperature();

6 read—temperature from dataset();

7 ...

8

9. }

Yes

L Vector table
1

1 Is this interrupt 1
1 .t trggered b BenchloT2

4

Original Read
temperature Handler

Initial Stack pointer
•••

BenchloT Trampoline
•••

BenchloT Trampoline
BenchloT Trampoline

I3enchloT Trampoline
•••

BenchloT Trampoline
Initial Stack pointer

•••
SVCaII

•••
SysTick
IRQO
IRQ1

•••
IRQn

37

