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Internet of Things

• The number of loT devices is expected to reach 20 billion by 2020.

• Many will be microcontroller based systems (loT-pCs).
• Run directly on the hardware.

• Can be with/without an OS (bare-metal).

• Direct access to peripherals and processor.

• Examples:
• WiFi System on Chip

• Cyber-physical systems

• UAVs
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Internet of Things

• In 2016, one of the largest DDoS attack to date was caused
by loT devices[1].
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• In 2017, Google's Project Zero used a vulnerable WiFi SoC to gain
control of the application processor on smart phones[2].

[1] https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/ 
[2] https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi 4.html



loT-pCs Challenges
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Evaluation in Current loT Defenses

• Multiple defenses have been proposed.
• TyTan[DAC15], TrustLite[EurSysl4],
C-FLAT [CCS16], nesCheck[AsiaCCS17],
SCFP[EuroS&P18], LiteHAX[ICCAD18]
CFI CaRE [RAID17], ACES[SEC18],
MINION [NDSS18], EPDXY [S&P17]

• How are they evaluated?
• Ad-hoc evaluation.

Defense

TyTa n

Evaluation Type

Benchmark Case Study

✓

TrustLite ✓

C-FLAT ✓

nesCheck ✓

SCFP Dhrystone[1] ✓

LiteHAX CoreMark[2] ✓

CFI CaRE Dhrystone[1] ✓

ACES ✓

Minion ✓

EPDXY BEEBS[3] ✓

[1] R. P. Weicker, "Dhrystone: a synthetic systems programming benchmark," Communications of the ACM, vol. 27, no. 10, pp. 1013-1030, 1984
[2] EEMBC, "Coremark - industry-standard benchmarks for embedded systems," http://www.eembc.org/coremark.
[3] J. Pallister, S. J. Hollis, and J. Bennett, "BEEBS: open benchmarks for energy measurements on embedded platforms," CoRR, vol. abs/1308.5174,
2013.[Online]. Available: http://arxiv.org/abs/1308.5174



loT-pCs Evaluation (Ideally)
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loT-pCs Evaluation (Reality)
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Defense Mechanism A

Benchmark
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• Different benchmarks
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• Comparison is not feasible
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Why not use a benchmark?

• Current benchmarks are rigid and simplistic.
• Many are just one file with simple application.

• Metrics are limited and cumbersome to collect.

• Hardware dependent.

• Do not use peripherals.

• No network connectivity.
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Proposed solution: BenchloT

• BenchloT benchmarks and evaluation framework.

• An extensible, portable evaluation framework.
• A software based approach.

• Applicable to other benchmarks.

• A realistic and portable set of benchmarks.
• Works for both with/without an OS.

• Deterministic execution of external events.

• Targeted Architecture: ARMv7-M (Cortex-M3,4, and 7 processors).



Comparison Between BenchloT and Other Benchmarks

Sense Compute Actuate

BEEBS

Network
Connectivity

Peripherals

✓

Dhrystone ✓

CoreMark ✓

loTMark
Partially

(Bluetooth only)
Only I2C

SecureMark ✓

BenchloT ✓ ✓ ✓ ✓ ✓



BenchloT: Overview
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BenchloT design aspects : (1) Hardware agnostic

• Applications often depend on the underlying vendor & board.
• Memory is mapped differently on each board.

• Peripherals are different across boards.

• For Operating systems:
• Mbed OS(C++)

—[Portable

{Vendor & board dependent

Hardware -wC

Application

Application

HAL Library
(Hardware Abstraction Layer)

CMSIS
(Cortex Microcontroller Software Interface Standard)

MCU Registers
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BenchloT design aspects : (2) Reproducibility

• Applications are event driven.
• Example: User enters a pin.

• Inconsistent (i.e., timing).

• Solution: trigger interrupt from software.
• Deterministic timing.

• Allows controlling the benchmarking dataset.
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BenchloT design aspects : (2) Reproducibility

Normal application

/* Pseudocode */

1. void benchmark (void) {

2. do some computation();

3 ...

4 ...

5 wait_ for_ user input(); Is t
6. read user input();

7. ...

8.

9. }

his deterministic? deterministic

BenchloT

Pseudocode */

. void benchmark (void) {

2. do some computation();

3.

,*
• • •

• • •

trigger_interrupt();

• • •

read user input();

• • •



BenchloT design aspects : (3) Evaluation

• Independent form vendor specific hardware.
• Software approach.

• Requirement: Data Watchpoint and Trace unit (DWT).

• Automated, finer grained metrics.

• Evaluation methods:
• Collection of scripts for static metrics.

• A statically linked runtime library: Metric collector 4 dynamic.

• A debugger (i.e., GDB with python scripting) 4 dynamic.

-.111111111h

4-0
GDB client
(BenchloT)

OpenOCD
(GDB server)

loT-pCs
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BenchloT design aspects : (4) Metrics

: Static metric

: Dynamic metric
Secu rity

,
Total

privileged cycles i
,

Privileged
, Thread cycles i

SVC cycles

Max Data
region ratio

r Max Code
_rlgjon ratio

•

DEP
 i

1 ROP resiliencl

# of indirect calls

Performance

& Energy

Total runtime

CPU sleep
cycles

‘. 

\

Initialization
cycles

 )

Initialization
cycles

Memory

Stack+Heap
usage

Total RAM usage

Total Flash
usage
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BenchloT design aspects : (5) Benchmarks

Benchmark

Smart Light

Smart Thermostat

Smart-locker

Firmware Updater

Connected Display

Sense

Task Type

Compute Actuate
Peripheral

s( N( N( Low-power Timer, GPIO,
Real-time clock

s( N( N( ADC, Display, GPIO, uSD card

N( s( Serial (UART),Display, uSD
Card 1 Real-time clock

N( N( Flash in-application
programming

s( s( Display, uSD Card

• Boards without non-common peripherals can still run the benchmark.
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BenchloT Evaluation: Defense Mechanisms

ARM's Mbed-pVisor

sci)

0 Application
5

code

pVisor

OS

• A hypervisor that enforces the
principle of least privilege.

Remote Attestation
(RA)

25ms
110.

Hashed code
block

• Verifies the integrity of the code
present on the device.

• Uses a real-time task that runs
in a separate thread.

• Isolates its code in a secure
privileged region.

Data Integrity
(DI)

Sensitive

Data

• Isolates sensitive data to a
secure privileged region.

• Disables the secure region after
the data is accessed.
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BenchloT Evaluation: Defense Mechanisms

• The goal is to demonstrate BenchloT effectiveness in evaluation.
• It not the goal to propose a new defense mechanism.

• ARM's Mbed-pVisor and Remote Attestation (RA) require an OS .

• Data Integrity (DI) is applicable for Bare-Metal (BM) and OS benchmarks.



BenchloT Evaluation: Defense Mechanisms

ARM's Mbed-pVisor

• Comparable
• Evaluation is automated

and extensible.
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Performance Results
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Measurement Overhead
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Privileged Execution Minimization Results

• Overhead
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Privileged Execution Minimization Results
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Memory Isolation and Code Injection Results

Memory Isolation and
Code injection Metrics

Max code
Reg. ratio

Max data
Reg. ratio

DEP

M bed-uVisor 1.0 1.0 x

Remote Attestation (OS) 0.99 1.0 ✓

Data Integrity (OS) 1.0 0.99 x

Data Integrity (BM) 1.0 0.99 x



Code Reuse Protection Results
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30

Memory Usage Results
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Memory Usage Results
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Energy Consumption Results
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BenchloT: Summary

• Benchmark suite of five realistic loT applications.
• Demonstrates network connectivity, sense, compute, and actuate characteristics.

• Applies to systems with/without an OS.

• Evaluation framework:
• Covers security, performance, memory usage, and energy consumption.

• Automated and extensible.

• Evaluation insights:
• Defenses can have similar runtime overhead, but a large difference

in energy consumption.

• Open source:
• https://github.com/embedded-sec/BenchloT
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Thank you!
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Comparison Between BenchloT and Other Benchmarks

Sense Compute Actuate

BEEBS

Network
Connectivity

Peripherals

✓

Dhrystone ✓

CoreMark ✓

loTMark
Partially

(Bluetooth only)
Only I2C

SecureMark ✓

BenchloT ✓ ✓ ✓ ✓ ✓



Evaluation in Current loT Defenses

Defenses Evaluation T3rpe
Benchmark Case Study

TyTan [8]
TnistLite [9]
C-FLAT [10] %.(
nesCheck [111
SCFP [12] Dhrystone [7]
LiteHAX [131 CoreMark [6]
CFI CaRE [14] Dhrystone [7]
ACES [15]
Minion [16]
EPDXY [17] BEEBS [4j



Metric collector measurements

• With BenchloT
Vector table offset

Vector table

A Button handler .0
Looked up
by hardware

Old vector
table Offset

/* Pseudocode 1

1 void BenchIoTTrampoline(void){

2. lookup_exception_number();

3. handle stack and LR value();

4. Start_measurement();

5. execute original exception();

6. end measurement();

7.

8. }

Initial Stack pointer
•••

BenchloT Trampoline
•••

BenchloT Trampoline
BenchloT Trampoline
BenchloT Trampoline

•••
BenchloT Trampoline
Initial Stack pointer

•••
SVCaII

•••
SysTick
!ROO
IM)1

•••
IRQn

:Start measurement and :
redirect execution to
' riginal handler

End measurement and :
return from handler  :



Benchmarks Reproducibility

• Example: reading temperature

/* Pseudocode

1. void benchmark temperature handler(void){

2.

3. // If not blocking,

4. // fltulate real execution

5 read actual temperature();

6 read—temperature from dataset();

7 ...

8

9. }

Yes

L Vector table
1

1 Is this interrupt 1
1 .t trggered b BenchloT2 

4 

Original Read
temperature Handler

Initial Stack pointer
•••

BenchloT Trampoline
•••

BenchloT Trampoline
BenchloT Trampoline

I3enchloT Trampoline
•••

BenchloT Trampoline
Initial Stack pointer

•••
SVCaII

•••
SysTick
IRQO
IRQ1

•••
IRQn
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