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Artificial neural networks and deep learning

{omputers are fast and efficient am

executing instructions

dx_

2
—=x
dt

x=1;

dt = 0.01;

fori=1:1000 {
dxdt = x."2;
xnew = dt*dxdt;
X = Xnew; }
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Artificial neural networks: use training examples and error backpropagation to find the

Computers struggle when there are
no clear instructions for the task

Which one of these images is a cat?

\ i
Image recognition
Autonomous driving

Natural language processing /
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matrix weights that correctly maps the input x onto the desired output y
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Andrew Ng, Coursera
Nawrocki et al. [EEE Elec. Dev. 2016
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Inference and training are very energy expensive

hidden layer 1 hidden layer 2 hidden layer 3

n, m> 1000




Energy in autonomous driving

EV: 5 kW in city driving

Source: Tesla

Chevy Bolt ~100 GB/sec

Human brain: 10 Watt Computing: 1-4 kW
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4-14 GPU per vehicle
~250 W/GPU

Nvidia




Digital and analog implementations of neural networks
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n, m > 1000

Von Neumann Digital

Separate logic and memory structures
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SRAM to store the

Arithmetic logic unit
for multiplication

Data Bus —
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Uses established CMOS technology

Data bus results in latency and power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018

In-memory Parallel Analog
Use non-volatile memory

Crossbar for matrix Conductance of each
element can be changed

multiplication
in a predictable manner

I I, I;
l1 = V4Wqq + Vo Wyq + V3 W3y

Simultaneous logic and memory
3 orders of magnitude less power

Challenge: find an appropriate low-energy,
highly predictable nonvolatile memory
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Three-terminal memory
Transistors store information by moving charge between the gate and the channel

Vw _______,: Tretention = Cgate Rorr
’ ol A —6 -2 ~16 2
- : Cgate = eoert— ~107°Fcm™ =10"""F (A =100 nm*)
Contrdl Gate ! ox
Oxide @ Option 1: transistor switch: Roee ~ 1015 Q
Floating Gate ! Tretention< 1 S (Resistive Processing Unit, dynamic RAM)
+ + + + : S. Ambrogio, G. Burr, et al. Nature, 558, 60 (2018)
Oxide E
Channel Option 2: floating gate oxide switch, Rogp ~ =
Tretention = 10 yr (FIaSh memory)
J; 10V, high power, limited endurance (10%)
Improving retention by increasing C . ? C = %
Electrochemical double-layer transistors Redox transistors
Electrons stored at the interface Electrons (and ions) are stored in the bulk of the
Ceate~ 107 Fem ™ material (battery)
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without electrostatic charging
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P. Gkoupidenis, G. Malliaras, Adv Mater, 27, 7176 (2015) E. Fuller, Adv Mater. 29, 1604310 (2017)

Y. van de Burgt, Nat. Mater., 16, 414 (2017)



U W} Electrochemical ion insertion

(V)
0/

—
e
Electrolyte
Li hovf‘t
Li*
Metal Metal
Substrate

Charge storage with minimal electrostatic charging

In batteries, intercalation provides a high density of energy storage;
In redox transistors, intercalation provides a high density of information storage
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W. Chueh. Ann. Rev. Mater. Res. 48, 137 (2018) |



Lithium insertion into LiKTiOZ (anatase)

cLixTiO; ©
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Solid Electrolyte
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Redox transistor using LiXTiOz (anatase)

Vy =150 mV
—
Sms
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» Linear and symmetric programming @ 130 M —— o e
» 150-mV write pulses - -

» Analog, non-volatile states 00 02 04 06 08 10




Redox transistor using LixTiO, (anatase)

Retention during
+ training

Channel conductance (uS)
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@ Two-terminal vs three-terminal synaptic memory

Memristor \ / Redox transistor \

Filament Write

[ Mlxed ] J/
conductor

lon conductor

[ Mixed ]
' conductor

-

Read
Electron current dominates write Electrolyte blocks electrons
write write ;
Ielectron > 1 ion ]é"{’e”éifﬂ o = IlV(\)/;;lte

Large joule heating Low write energy

KUnpredictable weight updatey @lictable finear weight updatj

Q. Xia and J. Yang, Nat. Mater., 18, 309 (2018) 10




Exceptional low-energy consumption
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Y. Van de Burgt, Nat Mater, 16, 414(2017)
M. Sharbati Adv. Mater. 30, 1802353 (2018)
J. Yang et al. Nat. Nano. 8, 13(2012)



- Linear programming and high accuracy

LixTiO, transistor Redox transistors store information /Linearity is essential to train\
Voltage: £ 0.15V continuously as dopants in a crystal an accurate neural network
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R. Jacobs-Gedrim et al. ICRC, 2017 Wang et al. Nat Mater. 2017
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Polymer-based “super-capacitive” redox transistors

Alberto Salleo, Stanford University

PEDOT (hole conductor)
PSS (proton conductor)

PEDOT
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A. Volkov, et al. Adv. Funct. Mater. 27, 1700329 (2017); Y. Van de Burgt, et al. Nat Mater, 16, 414(2017); E. Fuller, et al. Science, 364, 570 (26$9)




[@ Super-capacitative vs intercalation redox transistor

’ Li electrolyte |+
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H*: proton; h*: hole
PEDOT:PSS

No charge transfer;
Fast single-specie diffusion
Low capacitance: 40 F cm-3

Interfacial charge transfer
Slow chemical diffusion
High capacitance: 5000 F cm-3
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I Parallel weight updates in crossbar arrays
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We can select the rows and columns in this crossbar to update the
weights of many synapses in a highly parallel fashion in accordance with
an outer product update

E. Fuller, et al. Science, 364, 570 (2019)



Redox transistors for neuromorphic computing

/ Analog neuromorphic computing provides lower energy and \

more parallelism compared to digital computing.

the brain ~10 Hz

100 billion neurons
100 trillion synapses

/

f Electrochemical ion insertion can be used to create highly \
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Evolution of Computing Machinery

Dennard
Scaling Era

Energy Per Mathematical Computation
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From batteries to redox transistors

@eries: Maximize open-circm / Batteries: Current control\

voltage to store energy
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Redox transistors: Minimize Time (s)
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Low-voltage, Si-free electrochemical memory

Diffusive memristor (Ag in
SiOy): high ON/OFF ratio

Redox transistor: high charge
density via bulk storage

Both: Low switching voltages

Wang et al. Nat. Mater. 2017

Non-volatile memory that switches at just 6 times the thermal voltage

Channel conductance (uS)
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IG]I Switching speed and endurance

1@‘

per-capacitive PEDOT ~
108 read/write cycles

‘e

Intercalation LixTiO, ~5
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(k Scaling of energy, speed, and retention

|
‘ |
AQ: amount of charge moved per weight update | Gate Rorr
| |
AQ~ Volume ~ Area Roy\ﬁ Electrolyte /(
Channel
Energy = Viyrite AQ
Energy ~ Area
o AQ _ AQ _ RonAQ
Wriee I Vwrite/RoN Vwrite R0N~1/AT'€(1

Write time is independent of size in this geometry

AQ AQ
lieak  Vgate—channel/ROFF

Tretain =

~ CvolumetricRoff
Retention time is inversely proportional to the capacitance and the device area
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