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Artificial neural networks and deep learning 

omputers are fast and efficient at Computers struggle when there are
executing instructions no clear instructions for the task
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x=1;
dt = 0.01;
for i = 1:1000 {

dxdt = x.^2;
xnew = dt*dxdt;
x = xnew; }

end

Which one of these images is a cat?

Image recognition
Autonomous driving

Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y
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Inference and training are very energy expensive

input layer
hidden layer 1 hidden layer 2 hidden layer 3

Andrew Ng, Coursera n, m > 1000
Nawrocki et al. IEEE Elec. Dev. 2016
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Gip Energy in autonomous driving

EV: 5 kW in city driving

Chevy Bolt

Human brain: 10 Watt

rad ii;Ope7

• c
yltitalS1.3110

le (32.1110z. scOte Miro, 11 bin I 1

ource: sla

—100 GB/sec

Computing: 1-4 kW

Nvidia
3



o_o Digital and analog implementations of neural networks 
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n, m > 1000

Von Neumann Digital
Separate logic and memory structures

SRAM to store the Arithmetic logic unit
weights for multiplication

Data Bus

+  
4- x1

Uses established CMOS technology
Data bus results in Iatency and power

i nput layer
hidden layer 1 hidden layer 2 hidden laye

r In-memory Parallel Analog
Use non-volatile memory

Crossbar for matrix
multiplication

v,

v2

v3

Conductance of each
element can be changed
in a predictable manner

1 1 = V1W11 V2W21 V3W31

Simultaneous logic and memory
3 orders of magnitude less power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018 Challenge: find an appropriate Iow-energy,
highly predictable nonvolatile memory



Three-terminal memory 
Transistors store information by moving charge between the gate and the channel

Tretention = Cgate ROFF

Contrdl Gate

Oxide

Floating Gate

Oxide

Channel j

A
Cgate = E0Er 10-6 F cm-2 = 10' F (A = 100 nm2)

tox

Option 1: transistor switch: ROFF - 1015 Q

Tretention< 1 s (Resistive Processing Unit, dynamic RAM)
S. Ambrogio, G. Burr, et al. Nature, 558, 60 (2018)

Option 2: floating gate oxide switch, ROFF -

Tretention 10 yr (Flash memory)
10V, high power, limited endurance (105)

Improving retention by increasing Cgate? C =

Electrochemical double-layer transistors
Electrons stored at the interface

Cgate — 10-4 F cm-2

< 1 nm

Gate

Electrolyte

Channel

Redox transistors
Electrons (and ions) are stored in the bulk of the

material (battery)
Electron/ion neutral ambipolar pair enables AQ

without electrostatic charging

Cgate — 10-1 F cm-2 (100-nm film)

Gate 
0NM
•

Electrolyte

AINE=11111
P. Gkoupidenis, G. Malliaras, Adv Mater, 27, 7176 (2015) E. Fuller, Adv Mater. 29, 1604310 (2017)

Y. van de Burgt, Nat. Mater., 16, 414 (2017) 5



Electrochemical ion insertion 

e-

Li reservoir

Electrolyte

Li+ Metal

Substrate

Charge storage with minimal electrostatic charging

In batteries, intercalation provides a high density of energy storage;
In redox transistors, intercalation provides a high density of information storage

Y. Li, W. Chueh. Ann. Rev. Mater. Res. 48, 137 (2018)



rip Lithium insertion into Liji02  (anatase) 
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Redox transistor using LixTiO2  (anatase) 
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Redox transistor using LixTiO2  (anatase) 
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Two-terminal vs three-terminal synaptic memory 

Filament

Memristor

Mixed conductor

Write
Read

/

/

Electron current dominates write
'write 'write
`electron lion

Large joule heating
Unpredictable weight updates

Redox transistor

Write

Mixed
conductor

lon conductor

Mixed
conductor

//

/

Read

Electrolyte blocks electrons
'write — 'write
`electron — lion

Low write energy
Predictable /linear weight updates

Q. Xia and J. Yang, Nat. Mater., 18, 309 (2018) 10



Exceptional low-energy consumption 
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Device area Gim )

4 Flash
4 Phase-change
4 Memristor

Y. Van de Burgt, Nat Mater, 16, 414(2017)
M. Sharbati Adv. Mater. 30, 1802353 (2018)

J. Yang et al. Nat. Nano. 8, 13(2012)



Linear programming and high accuracy
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LixTiO2 transistor Redox transistors store information
Voltage: ± 0.15 V continuously as dopants in a crystal
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TaOx Memristor
Voltage: ±1 V
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R. Jacobs-Gedrim et al. ICRC, 2017

Memristors store information at
filaments

Wang et al. Nat Mater. 2017 

Linearity is essential to train
an accurate neural network
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Super-capacitative vs intercalation redox transistor 
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H+: proton; h+: hole
PEDOT:PSS

No charge transfer;
Fast single-specie diffusion
Low capacitance: 40 F cm-3
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Parallel weight updates in crossbar arrays 
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We can select the rows and columns in this crossbar to update the
weights of many synapses in a highly parallel fashion in accordance with

an outer product update

E. Fuller, et aI. Science, 364, 570 (2019)



Redox transistors for neuromorphic computing 

Analog neuromorphic computing provides lower energy and
more parallelism compared to digital computing.
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the brain -10 Hz

100 billion neurons
100 trillion synapses

Electrochemical ion insertion can be used to create highly
linear, low voltage non-volatile analog transistors
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Evolution of Computing Machinery
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From batteries to redox transistors 

I3atteries: Maximize open-circuit
voltage to store energy

6Anode

E ectrolyte

ecathod

Redox transistors: Minimize
open-circuit voltage for

array integration
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Materials should have a significant
change in conductance with a
minimal change in write voltage

Batteries: Current control
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Low-voltage, Si-free electrochemical memory 

Pt

JEN NENNelli
INCINEENNECIL

o

Solid Electrolyte

•

Diffusive memristor (Ag in
SiOx): high ON/OFF ratio

Redox transistor: high charge
density via bulk storage

Both: Low switching voltages

Wang et al. Nat. Mater.  2017

Non-volatile memory that switches at just 6 times the thermal voltage
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Switching speed and endurance 
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Scaling of energy, speed, and retention

AQ: amount of charge moved per weight update Gate

AQ— Volume — Area R01\1 Electrolyte

Channel
Energy = Vwrite AQ

Energy — Area

AQ _ AQ RONAQ 
Twrite = I VwriteIRON Vwrite RON '' I/Area

Write time is independent of size in this geometry

ROFF

AQ AQ_ _
Tretain — --' CvolumetricRof f

Ileak Vgate—channel/ROFF

Retention time is inversely proportional to the capacitance and the device area

I


