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Abstract

Biological compound production for industrial and economical purposes is an interesting and complex problem. Ideally, minimal genetic manipulation to the industrial microbial organism increases the likelihood of successful target compound production as
well as decreases cost. Determining which gene additions would allow production of multiple target compounds is a difficult and a nearly impossible task without the help of computational tools. RetSynth is a tool we developed that uses a novel constraint-
based approach, which works through dynamic and recursive manipulation of constraints followed by integer-linear programming, to discover the minimal number of reactions/genes (optimal solution) that when added to a chassis organism results in
production of a target compound. Unique to RetSynth, all optimal solutions, all combinations of the minimal number of reactions/genes that can produce the target chemical, are discovered allowing the user more reaction/gene options. Additionally, sub-
optimal solutions to target compound production, solutions which require more reactions than the minimal number, can also be identified. By obtaining all optimal and sub-optimal solutions for multiple target chemicals we can identify genes that overlap in
the solutions and therefore would be ideal gene additions to the host organism. Adding the gene that appears in the greatest number of solutions into the chassis organism would lessen the amount of downstream genetic manipulation required for
production of many target compounds. We identified optimal and sub optimal solutions in Escherichia Coli K12, Psuedomonas Putida KT-2440, and Streptomyces Venezuele ATCC for 1979 hydrocarbons from the MetaCyc database. From these solutions we
discovered genes that are present the highest number of target production solutions and would therefore make an optimal genetic manipulation to each of the chassis organisms.

RetSynth workflow Identifying optimal genetic manipulations

Validation of RetSynth

Target compound Metabolic Database To validate RetSyth we searched for pathways to target compound production for which there was already experimental pathways developed in
T Escherichia Coli DH1. This allowed us to compare our tools results to experimentally developed pathways to prove our algorithm was effective at
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if further genetic manipulation was added) we used RetSynth to identify optimal and sub-optimal pathways for 1979 hydrocarbon molecules in host
organisms Escherichia Coli K12, Pseudomonas putida KT2440, and Streptomyces venezuelae ATCC 10712 . It was then determined which
gene/enzyme was apart of the most number of targets’ pathways to production and therefore would be a beneficial genetic manipulation.

* Graphs below depict the optimal and sub optimal solutions that were identified for the 1979 for each of the chassis organisms.
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Of the three chassis organisms Pseudomonas Putida can with the optimal pathways can produce the most target compounds (904) closely followed

by Escherichia Coli (866) and Streptomyces Venezuele (866).

* Hydroxyphenylpyruvate reducatases (EC 1.1.1.222 and 1.1.1.237), which catalyze the conversion of P-hydroxyphenylpyruvate and 3,4-
dihydroxyphenylpyruvate to (R)-3-(4-hydroxyphenyl)lactate and (R)-3- (3,4-dihydroxyphenyl)lactate respectively, when added to all each of the 3
chassis organisms can lead to the downstream production of ~¥100 hydrocarbons. These enzymes are natively found in the organism

Flux Balance Analysis Solenostemon scutellariodes.
* Tyrosine ammonia-lyase (EC 4.3.1.23/EC 4.3.1.25) which catalyzes the reaction of tyrosine to 4-coumarate can also lead to the production of
~150 down stream compound products in each of the chassis organisms. This enzyme can be found naturally in Rhodotorula glutinis.

Download RetSynth at e Cinnamate 4-hydroxylase (EC 1.14.13.11), which catalyzes cinnamate to 4-courmate when added can lead to the production of ~150

https://github.com/sandialabs downstream targets in chassis organisms Pseudomonas and Streptomyces and is naturally found in Arabidopsis thaliana.

/RetSynth * Phenylalanine ammonia-lyase (EC 4.3.1.24/EC 4.3.1.25) which catalyzes the reaction of phenylalanine to cinnamate can also lead to the
production of ~400 down stream compound products in each of the chassis organisms. This enzyme can be found naturally in a number of
species including Streptomyces maritimus, Arabidopsis thaliana and Ustilago maydis 521.
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Once optimal solutions have been identified flux balance
analysis (FBA) is used to simulate metabolic activity of the
organism to determine theoretical yields of the target

compound with the added pathways. Additionally, gene
and reaction knockouts are performed to see if theoretical
yields can be increased by further genetic manipulation.




