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Abstract
Stem cell-based therapies are rapidly gaining traction in a number of areas of medicine, including in the
response to the growing need for novel treatments for infectious disease. Mesenchymal stem cells
(MSCs) are an extremely versatile adult stem cell type, having regenerative, anti-bacterial and
immunomodulatory properties, all of which are vital for defending against infectious agents and
remediating sites of infection. However, this versatility comes at a price — MSCs represent a
heterogeneous spectrum of cell types, with lab-, strain- and context-specific differences in surface
markers and properties. Our goal is to develop a system to regulate and deploy these various MSC
properties without losing the inherent versatility. To achieve this, we are using transcriptomics and
proteomics to characterize MSCs and related cell types from different sources. Using this integrated data
to inform our experimental design, we use gene editing technology to both generate MSC-like anti-
microbial cells from related cell types, and specifically activate target genes in MSCs to reliably enhance
antibacterial activity. Showing that MSCs can be engineered while still maintaining their identity and
versatility solidifies the status of MSCs as a major therapeutic not only for infectious disease, but for any
medical conditions that require immunomodulation and/or regeneration.
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Fig 1. Bone marrow derived MSCs from
Balb/c and C57BL/6 mice have distinct
transcriptional profiles (A),
differentially express genes involved
with innate immunity (B,D), and have
different antibacterial phenotypes (C).
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Fig 2. E. coli antibacterial assays after
priming with TLR agonists and
measured by Bactiter glo using MSCs
from (A) C57BL/6 and (B) Balb/c. (C)
CFUs from E. coli antibacterial assays
of MSCs primed with LPS.
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Figure 3. Stimulation of MSCs by TLR agonists
leads to nuclear translocation of NFkB via p65
immunofluorescence in Balb/c MSCs but not
C57BL6 (A,B,C). Cytokine profiling of LPS
stimulated cells reveals increases in IL6 and
MCP1 (D,E).
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Transcriptional profiling of MSCs LPS stimulation reveals
candidate genes regulating antibacterial effects
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Figure 4. MSCs were stimulated with LPS and
RNA seq was performed on cells collected at 0,
0.5 hr, 2 hr, and 18 hrs of exposure. (A)
Transcriptional profiles of different time points
clustered into groups. (B) Heat map depicting
TLR signaling gene counts during LPS-time
course. (C) Examples of gene patterns during
time course.

Engineering MSCs with CRISPR to be increase antibacterial activity
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Figure 5. MSCs containing CRISPRa systems (SAM and VPR) are being utilized to increase antibacterial properties.
MSCs were engineered to overexpress CD14 or TLR4 using CRISPR SAM system, and overexpression was checked
with immunostaining and flow cytometry. Both overexpression lines promoted increased antibacterial behavior.
Additional candidate genes to be tested from RNA seq analysis.
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