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Layered Chalcogenides: Diversity of
compositional and structural arrangements
Example: Bi2Te3
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Anisotropic, layered
structures contribute to
useful and interesting
thermal, electronic, optical
properties:
Thermoelectrics,
Photothermoelectric Effect,
Topological lnsulators,
Dirac Semimetals

Focus for today's presentation:
Analysis of dislocation core-structure in these materials
Bismuth Telluride: 

-Basal dislocations — core spreading in relationship to gamma surface
-Rhombohedral dislocation — climb-dissociation

Zirconium Telluride: 
[001] dislocation — climb dissociation
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Dislocations in Bismuth Telluride (Bi2Te3)

Burgers vectors lying in basal plane
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Looking down on basal plane

Array of 1/3<2-1-1 0> Dislocations in Bi2Te3

Amelinckx and Delavignette, 1960

Fig. 1. Dislocation network in 'Mae*. Note that certain seg-
ments of dislocations and certain node-points have left the foil
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5-layer
Bi2Te3

"quintet"

[0 0 0 1

A

Dislocation Core structure:
Termination at TeM-Te(1) layer
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Surprising Result: Broad core, but no
dissociation into partial dislocations
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Modeling: combination of ab initio and
semi-continuum dislocation theory
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Shallow minimum relative to unstable SFE
prevents localization into discrete partials
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Non-basal dislocations:
Screw dislocations important to crystal growth

Example: spiral growth steps at
screw dislocation in Bi2Te3 thin film

Screw Dislocation
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What about edge dislocations
with non-basal Burgers vectors?

0

Growth step ,-
1 quintuple layer high

AIIPP
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National
Laboratories



Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?

0 LI 0 R_ 0 61 0 El

xo M 0 • e li n ❑11 lj " - -\•
o El o El El CI EL --. -CI- " °m 

i‘e, El '

x:2) 
_ ❑_

❑ 
• , .._„ff 0 M 0 5 D-

m 
_ miii am -___,, • -0._ 0 0 o l ;., . ,-..

x(i) .0 El 0 9E1 ° I 0 . • . ci A" }

xa) 
• •■• • . ri 0 1111 C.) D 0 El

NA 
D 0 III 0 121e560 ° . • I;1 • .

....

V) 0 
• D • • — 

—11_, Ci If i -

10 0 . 
a ❑0 0 0 0 

..._)
IEI 0 III c...
- %_,. _

xo-) 
❑ c.-) l l c. .0. El 0

CE 0 0 0 0 111 • 0 El • i 

x(1) a C. III 0 0 0 ❑El,_ 0 I/ 0

x(2) El 0 El 0 ❑EiP EIP''°)D" °MCI°NI a 0 0 III 0 
0

m 
C. l 0 .--,.,_,. &ii

❑ El ° .11:1 • • 11
_ ii _El 0  m • ° 171 "'1 0 
—I ee , 

I 
b 1...._., • 11 °• 0 El C. ❑ c

b = (1/3)[01-1-1)H [00-1]R Sandia
National
Laboratories



Dislocations in Bi2Te3 Nanowires

Wires formed by electrochemical
deposition in nanoporous AAO
templates.

Free standing wires annealed 30
minutes at 300° C in Ar-3%H2.

4 Some loss of Te due to high
vapor pressure

Medlin, Erickson, Limmer, Yelton, Siegal, J. Mat. Sci. 2014

5.5° Tilt misorientation
Accommodated by array
of 1/3<01-1-1> dislocations
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Dislocations have dissociated core:
two configurations

<1 0 -1 0> Projection

Medlin, Erickson, Limmer, Yelton, Siegal, J. Mat. Sci. 2014
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(1/3)[0 1 -1 -1] Dislocation in Bi2Te3:
Core structure:
Bi3Te4 7-layer fault
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7-Layer Bi3Te4 faults: Mechanism to
accommodate Te loss during annealing

Climb dissociation

P
A
c
PA
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• b is parallel with
(0 1 -1 5) planes

• 2/5 of the total
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along c-axis
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ZrTe5: A complex, layered chalcogenide
Material of interest as a Dirac Semimetal

Corrugated layering structure
Orthorhombic, Cmcm
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Dislocation Structure in Zirconium Telluride
HAADF-STEM
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Dislocation Structure in Zirconium Telluride
HAADF-STEM
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Elongation of shear strain along c-axis
HAADF-STEM Exy (measured, GPA)
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scan distortion
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5 images collected at 90° scan
rotation increments

GPA: Gaussian masks with 6=0.12 nm-1

10 nm

Exy (calculated, isotropic elasticity)

E =1.1 X 1011 Pa
(Brill and Sambongi, 1984)
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Measurement shows greater elongation
of Exy region parallel to c-axis compared
with isotropic elasticity solution.

Easier shear in direction parallel
with double-tellurium layers?
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Partial dislocations separate varying
transition region: no well-defined fault
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Conclusions
Key structural aspects layered chaicogenides are manifested in the
detailed structures of extended defects in these materials.

Weak, van der Waals bonding across double chalcogenide
layers

Ability to accommodate non-stoichiometry through altering
the layer stacking

Atomic scale microscopy is clarifying the core structure of
dislocations, interfaces, and interfacial line defects

Complex, dissociated core structures observed in Bi2Te3 and ZrTe5

Theoretical treatments for transport behavior at such defects should
not neglect the possibility for such dissociation.
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