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E3SM Land Model (ELM)

• US Department of Energy (DOE) sponsored Earth system model

• Land, atmosphere, ocean, ice, human system components

• High-resolution, employ DOE leadership-class computing facilities

• Some of the results are with ELM-LF: a lower-fidelity, python version
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ELM-LF: Pushed-f(Wmvard Prior Distributions

• Uniform priors for all model parameters

• bounds set based on physical constraints and/or information from subject

matter experts

Harvard Forest EMS Tower (42.5°N,75.2° W)
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-LF: Sample Spatial Patterns

Gross Primary Production (GPP)

• spatio-temporal patterns for one parameter sample
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Surrogates via Low-Rank Tensor Train Models

Tackle high-dimensionality and computational expense in Earth System Models via
Global Sensitivity Analysis

• Explore Model Structure

• Seek efficient surrogate models for subsequent analysis of E3SM model
components.

The low-rank functional tensor-train representation employs a set of matrix-valued
functions in a tensor-train format to reveal couplings in high-dimensional models

• Subsequent Global Sensitivity Analysis results reveal that only a small number
of parameters are driving the variability in output Quantities of Interest (Qols).

• furthermore, spatial and temporal proximity results in correlated model
behaviors.
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Low-Rank Tensor-Train

Employ an approach analoguous to low-rank tensor decompositions:

rd
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A compact expression can be assembled using a set of products of matrix-valued
functions

f(xl , X2, . . . Xd) = (Xl).T2(x2) • • • Td(Xd)
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Low-Rank Tensor-Train — Univariate Functions

The univariate function fe(4) can be viewed as a random variable induced by the
uniform random input 6,,

—> fi(cii)(xk(ek))

and can written as a Polynomial Chaos Expansion with respect to standard
polynomials Wc,(6,),

Pk

ff(11)(Xk(6()) E eipov;ilk)(k),
i=o

where pk is the number of basis terms chosen to approximate f;((ii)(xk(ek)).

• Legendre polynomials are orthogonal with respect to uniform measure of G,
ir(6() = 1/2 in [-1, 1]

<41 0,(6c)111 a' (6()) f 111 .(ek)W (ek)7(6c)dk = 5., (W.(ek)2)
—1

• Other polynomials are available depending on the expected behavior of the
Qols.
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Low-Rank Tensor-Train — Optimization

• Consider a number of ELM-LF model results y corresponding to a set of choices
x for the model inputs.

argminelly Q[f]

• A penalty term is added to minimize the norm of the functions in the
matrix-valued Tk()(k)

d rk-1 rk

fl[f] = 112

k=1 1=1 j=1

• Quasi-Newton method using L-BBFGS

C3: Compressed Continuous Computation library
https://github.com/goroda/Compressed-Continuous-Computation
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Seq

• Summary of Low-Rank Function Tensor Train (LRFTT) Approximation Model Fits

• select polynomial orders (same for all univariate functions), TT rank, and

regularization constant through cross-validation —> explore a 3D grid of

choices

• Comparison with Polynomial Chaos Models (PCE) via Sparse Regression

• ... via Bayesian Compressive Sensing

• https://www.sandia.gov/UQToolkit

• 1000-2000 model simulations

• (Randomized) Partioned into training and testing sets

• K-fold cross-validation (4 folds)

• Global Sensitivity Sensitivity Analysis Results

• ELM-LF monthly averages for select Qols: LAI & GPP
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LRFTT Cross
Orders

validation: Ranks and Polynomial

Leaf Area lndex (LAI)
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LRFTT Cross-validation: Ranks and Polynomial
Orders

Gross Primary Production (GPP)
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LRFTT vs Sparse Polynomial Chaos Expansions

LRFTT: parameter ordering matters explore several permutations

Name Sequence of processes
lro:

lr2:

11-5:

lr8:

acm, ar, alloc, phen, litter, decomp
decomp, alloc, acm, ar, phen, litter
phen, decomp, ar, litter, alloc, acm

alloc, phen, ar, decomp, acm, litter

ar, alloc, decomp, litter, acm, phen

Sparse PCE results denoted as pce
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GPP Accuracy: LRFTT vs Sparse PCE
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LAI Accuracy: LRFTT vs Sparse PCE
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0.130

0.125

0.120

0.115

;CI 0.110
0.105

0.100

pce Iro

June @ US-Hal

0.18

0.16

0.14

73.J 0.12

a 0.10

0.08

0.06

Iri Irz Iro Irs Irs Ir0 Ira Iro Irio

4

pre Iro Iri iro Ir0 Iro Irs Ir0 Ir0 Ir0 Iri Irio

Cosmin Safta (csafta@sandia.gov) LR-ELM



Motivation Low-Rank Earth System Model Results

LAI Accuracy: LRFTT vs Sparse PCE
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GSA - Total Effect Sobol Indices

• Results corresponding to US-Hal site

• Sobol indices correspond to monthly Qol averages over 1980-2009

• Temporal trends match subject matter expert intuition for relevant processes
controling GPP and LAI.
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Summary an• Future Work

• Functional low-rank approximations proved efficient in capturing input-output
dependencies imposed by land model processes.

• Land Model is amenable to surrogate modeling via low-rank interactions.

• For this set of models the low-rank functional approximation performs
slightly better compared to a sparse regression polynomial chaos fit.

• Identified a set of 10-12 parameters (out of 47) which are driving the

variance in the selected Qols.

• Exploring techniques for discovering and folding spatial dependencies

(space/time) into the low-rank approximation.

Cosmin Safta (csafta@sandia.gov) LR-ELM


