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2 Evolution of a Mindset: From Simple to Complex o

• Peak radiative heat fluxes to engulfed objects is a function of fuel type, pool size,
obstructions/accident geometry, and presence of cross-flow

• As cross-flow and geometric complexity of accident scenarios increase, SNL has found
that transitioning from a Reynolds-Averaged Navier-Stokes (RANS) to a more predictive
Large-eddy simulation (LES) approach is required 4 HPC on Next-Gen platforms

RANS-based 1 > LES-based

Quiescent; q"r
- 100 kw/m2

Cross-flow; q"r
- 200 kw/m2

Whirls
» 200 kw/m2



3 Core Research Objective: Understand Large-Scale Fire Dynamics

The coupling of cross-wind with a hydrocarbon
fire event drives large-scale column vortex
formation — very similar to classic jet-in-cross
flow behavior (see below)

• Increased mixing yields increased radiative heat
fluxes

• Although lab-scale efforts exist for quantities
such as flame drag distance and tilt angles, none
exist for scale of interest to SNL, e.g., 10 meters
and beyond

• SNL is quantifying large-scale fire physics (F, 0,
ect.) through theory and simulation

shear layer
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LES of pulsed jet in cross flow; Coussement et al, JFM, 2012
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4 Core Research Objective: Support High-quality VVUQ Process

Goal: Define a sound verification and
validation process (with uncertainty
quantification) that includes the
following attributes:

Definition of key physics, PIRT

Code implementation

Code verification
Including higher-order unstructured

Solution Verification (meshes with
converged statistics)

• Structural Uncertainty (model form)
Quantification
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5 Core Research Objective: Automatic Structural Uncertainty

A Direct Numerical Simulation (DNS) data set was developed by the Domino
VVUQ/Stanford PSAAP-2 partnership

• Educated eigenvalue perturbations conduced within a suite of LES models to provide
an uncertainty bound for a turbulent axisymmetric jet (ramifications for machine
learning)

• See, "Eigensensitivity analysis of subgrid-scale stresses in large-eddy simulation of a
turbulent axisymmetric jet", Jofre, Domino, and Iaccarino, 2019
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Core Research Objective: Capturing Complex Internal Physics
6 for Fully Engulfed Objects

• Systems within the Abnormal Thermal
Environment experience pressurization
due to internal thermal decomposition of
common materials

- At critical component pressures, venting
of hot combustible gas occurs either by
system design or structural failure

• Venting events are characterized by an
impinging turbulent non-isothermal jet
blowdown

• This year, a Direct Numerical Simulation
(DNS) effort is being conducted to
understand low-Mach non-isothermal jet
impingement (hot jet, cool surface)

• Simulations are being run up to 15 billion
mesh nodes on up to 384,000 processors
(6000 KNL nodes at 64 MPI-rand/node)

• This DNS is supporting Machine-learning
objectives for, e.g., ML-based wall-
modeled LES,
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7 Conclusions o

RAN S-based approach to LES-based will increase predictivity of fire-mechanics in
complex accident scenarios

Large-scale fire dynamics understanding is of interest — especially when providing heat
fluxes to objects of interest

High-quality v&-V methodology requires quantification of all possible errors including
model-form (structural), numerical (solution verification), and parameter uncertainties
(epistemic and aleatory)

Objects within a fire environment often times undergo complex morphology changes
that drives new and challenging mod/sim objectives

1



8 Extra Slides o



9 Evolution of a Mindset..... Modeling Whirling-like Flow

• Idealized chamber in which swirl is provided by selective wall placement in the
experimental design

Gap varied between 10, 20, and 40 cm

• Objective: Can the onset of swirl be predicted? What is the strength?
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10 More Effective/Efficient Structural Uncertainty

In the previous high-quality LES validation (cylinder in x-flow), three models were
implemented and tested (verified and maintained in the code repository)

Is there a more efficient approach? Yes! Eigenvalue perturbation of the SGS stress
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