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2 I Evolution of a Mindset: From Simple to Complex

* Peak radiative heat fluxes to engulfed objects is a function of fuel type, pool size,
obstructions/accident geometry, and presence of cross-flow

* As cross-flow and geometric complexity of accident scenarios increase, SNL has found
that transitioning from a Reynolds-Averaged Navier-Stokes (RANS) to a more predictive
Large-eddy simulation (LES) approach is required = HPC on Next-Gen platforms

Quiescent; q”, Cross-flow; q”, Whirls
~ 100 kw/m? ~ 200 kw/m? >> 200 kw/m?



Core Research Objective: Understand Large-Scale Fire Dynamics

The coupling of cross-wind with a hydrocarbon
fire event drives large-scale column vortex
formation — very similar to classic jet-in-cross
flow behavior (see below)

oz X

Increased mixing yields increased radiative heat
fluxes

Although lab-scale efforts exist for quantities
such as flame drag distance and tilt angles, none
exist for scale of interest to SNL, e.g., 10 meters

and beyond

SNL is quantifying large-scale fire physics (I', 0, 10 m/s

ect.) through theory and simulation

10 m pool fire
LES of pulsed jet in cross flow; Couésément et al, JFEM, 2012 LES-based numerical StUdy



41 Core Research Objective: Support High-quality VYVUQ Process

Goal: Define a sound verification and

validation process (with uncertainty
quantification) that includes the

following attributes:

* Definition of key physics, PIRT

* Code implementation

* Code verification

¢ Including higher-order unstructured

* Solution Verification (meshes with

converged statistics)

¢ Structural Uncertainty (model form)
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Core Research Objective: Automatic Structural Uncertainty

* A Direct Numerical Simulation (DNS) data set was developed by the Domino
VVUQ/Stanford PSAAP-2 partnership

* Educated eigenvalue perturbations conduced within a suite of LES models to provide
an uncertainty bound for a turbulent axisymmetric jet (ramifications for machine
learning)

* See, “Eigensensitivity analysis of subgrid-scale stresses in large-eddy simulation of a
turbulent axisymmetric jet”, Jofre, Domino, and Iaccarino, 2019
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Core Research Objective: Capturing Complex Internal Physics
for Fully Engulfed Objects

Systems within the Abnormal Thermal
Environment experience pressurization
due to internal thermal decomposition of
common materials

Time: 0.000000

At critical component pressures, venting
of hot combustible gas occurs either by
system design or structural failure

Venting events are characterized by an
impinging turbulent non-isothermal jet
q_criterion temperature
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This year, a Direct Numerical Simulation .
(DNS) effort is being conducted to LES Scoping Study
understand low-Mach non-isothermal jet Re = 10,000, TJ = 300C
impingement (hot jet, cool surface)

Simulations are being run up to 15 billion y4
mesh nodes on up to 384,000 processors

(6000 KNL nodes at 64 MPI-rand/node)
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This DNS is supporting Machine-learning
objectives for, e.g., MIL-based wall-
modeled LES,

(a) ] Bottom wall (b)

Guo, 2016




Conclusions

RANS-based approach to LES-based will increase predictivity of fire-mechanics in
complex accident scenarios

Large-scale fire dynamics understanding 1s of interest — especially when providing heat
fluxes to objects of interest

High-quality V&V methodology requires quantification of all possible errors including
model-form (structural), numerical (solution verification), and parameter uncertainties
(epistemic and aleatory)

Objects within a fire environment often times undergo complex morphology changes
that drives new and challenging mod/sim objectives
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9 I Evolution of a Mindset..... Modeling Whirling-like Flow

* Idealized chamber in which swirl is provided by selective wall placement in the
experimental design

* Gap varied between 10, 20, and 40 cm

* Objective: Can the onset of swirl be predicted? What 1s the strength?

R1,20cm
10cm, R1 A0cm, R1
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10 I More Effective/Efficient Structural Uncertainty

* In the previous high-quality LES validation (cylinder in x-flow), three models were
implemented and tested (verified and maintained in the code repository)

* Is there a more efficient approach? Yes! Eigenvalue perturbation of the SGS stress
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* See “A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation
Closures”, Jofre, Domino, and Iaccarino, 2018




