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Governing equations ),
= Two-phase flow in a capillary porous medium
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» Relative permeability (kri) and capillary pressure (pc) are
defined by the van Genuchten functions.




Governing equations =,
= Two-phase flow in a capillary porous medium
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= (Quasi-static linear momentum
V-o+pg=20
= Effective stress in fluid-saturated porous media

g¥/l =g + alp  p =Saturation-weighted average of the phase pressures

= Stress-strain constitutive model
/T = X trace(e)l + 2Ge
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Governing equations =,
= Two-phase flow in a capillary porous medium
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= Stress equilibrium
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p = Saturation-weighted average of the phase pressures

Pore pressure change 4__’ Rock deformation
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Coulomb stress change =,

At = At + f (Ao, + Ap)
\ )
v

Effective
stress

(+) for tension

At = shear stress change
Ao, = normal stress change
Ap = pore pressure change

f = failure friction coefficient

= (+4) values of each quantity imply that the fault plane

is moved closer to failure
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Coulomb stress change

At = (At + fAo,) + fAp
\ )

\ )

! ! (+) for tension
Poroelastic Pore
stress pressure

At = shear stress change
Ao, = normal stress change
Ap = pore pressure change

f = failure friction coefficient

= |nthe uncoupled system, poroelastic stress term

goes to zero (neglecting mechanical behaviors)
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Model scheme
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Results 1)
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= (CO2 and pore pressure penetrate rapidly across the interface
between reservoir and fault, and spread throughout the fault.

= Near the injection well (highly CO2-saturated region) experiences
less pressure buildup due to larger mobility.
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Results i) e
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Sealing fault
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= Pore pressure accumulates along the fault acting as a “hydraulic
barrier”.

= The water-wet fault and nearby formation also act as a “capillary
barrier” formed by the large contrast in permeability across the

interface.
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Results
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Pore pressure (fAp) increases
rapidly in the conductive faults
(blue lines).

Once CO2 plumes encounter
the fault, capillary pressure
generates larger fAp.

The sealing faults have slower
pore-pressure buildup due to
low diffusivity.




Results ) i
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= The compressive poroelastic

stresses reduce the direct
impact of elevated pore
pressure along the fault.

For the conductive faults, direct
diffusion of pore pressure
controls the fault stability
substantially, generating (+)Ar.

For the sealing faults,
poroelastic stressing enhances
the fault stability initially,
generating (-)At, and gradually
pressure buildup destabilizes

the fault over time.
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Conclusions =

= Near the injection well, larger mobility of CO2 reduces
pressure buildup within the highly CO2-saturated zone.

= Depending on the fault permeability, the fault can act as a
hydraulic or capillary barrier against fluid phases, which
can enhance the potential of induced seismicity along the
fault.

= Poroelastic coupling can reduce the direct impact of pore-
pressure buildup on the fault instability. The immediate
mechanical response to CO2 injection can enhance the
stability of the sealing fault as a poroelastic response.
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Seismicity along the basement fault @&
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= |njection-induced earthquakes occur
along the fault within the basement.
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In-situ fault structure )

FALULT ARCHITECTURE IN THE MINA RATONES AREA
SE View

(Escuder-Viruete et al., 2003)

= Geological characterization of the faulting system shows
the complexity of the fault-zone structure embedded in a
multi-layered system
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