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1. Pressure propagation

> Stress perturbation
along the fault

Poroelastic coupling

2. CO2 plume migration

> CO2-accumulation along
or -penetration into the
fault

Multiphase flow system



Governing equations
• Two-phase flow in a capillary porous medium
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> Relative permeability (kri) and capillary pressure (pc) are
defined by the van Genuchten functions.
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Governing equations
• Two-phase flow in a capillary porous medium
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• Quasi-static linear momentum

V • a + pg = 0

• Effective stress in fluid-saturated porous media

(Jeff = 6 + alp p = Saturation-weighted average of the phase pressures

• Stress-strain constitutive model

aeff = A trace (E)I + 2G E
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Governing equations
• Two-phase flow in a capillary porous medium
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• Stress equilibrium

V • [GVu] + V 
[1 

2.1/V • u - aVp + f = 0
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p = Saturation-weighted average of the phase pressures

Pore pressure change Rock deformation
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Coulomb stress change

AT = ATs + f (Aan + Ap)

(+) for tension

Effective
stress
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Ars = shear stress change

Aan = normal stress change

Ap = pore pressure change

f = failure friction coefficient

• (+) values of each quantity imply that the fault plane
is moved closer to failure
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Coulomb stress change

AT (ATS + fAan) + f AP
L_T_I

(+) for tension

Poroelastic Pore

stress pressure
Ars = shear stress change

Aan = normal stress change

Ap = pore pressure change

f = failure friction coefficient

• In the uncoupled system, poroelastic stress term
goes to zero (neglecting mechanical behaviors)
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Model scheme
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• 2-D aerial view

• Immiscible brine-0O2
flow system

• Injection for 25 years
with the rate of 0.1
[kg/m/s]

• Comparative studies

- Conductive vs. sealing

1 x 10-12 m2kf,cond =

1 X 1 0-
21 m2

kf,seal =

- Single- vs. two-phase
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Results
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• CO2 and pore pressure penetrate rapidly across the interface
between reservoir and fault, and spread throughout the fault.

• Near the injection well (highly CO2-saturated region) experiences
less pressure buildup due to larger mobility.
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Results

Sealing fault
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• Pore pressure accumulates along the fault acting as a "hydraulic
barrier".

• The water-wet fault and nearby formation also act as a "capillary
barrier" formed by the large contrast in permeability across the
interface.
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Results
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• Pore pressure (fAp) increases
rapidly in the conductive faults
(blue lines).

• Once CO2 plumes encounter
the fault, capillary pressure
generates larger fAp.

• The sealing faults have slower
pore-pressure buildup due to
low diffusivity.
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Results
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• The reservoir surrounding
faults expands with CO2
injection, which generates
compressional stresses within
the fault zones, generating (-)
ATs+fAcyn.
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Results
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• The compressive poroelastic
stresses reduce the direct
impact of elevated pore
pressure along the fault.

- For the conductive faults, direct
diffusion of pore pressure
controls the fault stability
substantially, generating MAT.

- For the sealing faults,
poroelastic stressing enhances
the fault stability initially,
generating HAT, and gradually
pressure buildup destabilizes
the fault over time.
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Conclusions

■ Near the injection well, larger mobility of CO2 reduces
pressure buildup within the highly CO2-saturated zone.

■ Depending on the fault permeability, the fault can act as a
hydraulic or capillary barrier against fluid phases, which
can enhance the potential of induced seismicity along the
fault.

■ Poroelastic coupling can reduce the direct impact of pore-
pressure buildup on the fault instability. The immediate
mechanical response to CO2 injection can enhance the
stability of the sealing fault as a poroelastic response.
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Seismicity along the basement fault
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• Injection-induced earthquakes occur

along the fault within the basement.
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In-situ fault structure

FAULT ARCHITECTURE IN THE MINA RATONES AREA

SE View

27* cos
(corir.)

292
Fko

Fav4

ti

6111“ RATOMES 27' Dyke

(Escuder-Viruete et al., 2003)

• Geological characterization of the faulting system shows

the complexity of the fault-zone structure embedded in a

multi-layered system
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