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Motivation

✓ for over 100 years researchers have studied the gas phase
interaction of ozone with hydrocarbons

✓ atmospheric (tropospheric) chemistry
• ozone is a major oxidant

• understanding aerosol, pollution formation as well as NOx, HOx,
intermediate generation and consumption

✓ flame chemistry
• kinetic acceleration of low temperature chemistry

• laboratory studies of stable cool flames
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Background Information: Ozonolysis

V mechanism laid out by Rudolf Criegee in 1975

CI cleavage of unsaturated hydrocarbon double bond
through ozone addition

CI cyclic primary ozonide (POZ)

➢ keto-hydroperoxide (hydroperoxy-acetaldehyde)

➢ carbonyl group (formaldehyde) + carbonyl oxide
(Criegee Intermediate — CH200)

CI cyclic secondary ozonide (SOZ)

➢ hydroxy-methylformate

CI CH202 either collisionally stabilizes, decomposes or
isomerizes

✓ IUPAC recommends 4 reactions to model this
process for atmospheric chemistry

CA-Ta•..

CH20 + CH?.00'

li2CCH2

C
o

/—c)

KHP

CH200 HCO+OH H2O+CO CO2+H+H H2+CO2

C2H4 + 03 <=' CH20 + HCO + OH
C2H4 + 03 <=> CH20 + H20 + CO

C2H4 + 03 <=> CH20 + CO2 + H + H
C2H4 + 03 <=> CH20 + CO2 + H2

(1)
(2)

(3)
(4)
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Challenges, Objectives, and Outcomes
✓ Challenges: intermediate species difficult to measure directly

➢ Criegee Intermediates are slow to form but extremely fast to react
➢ many experiments exploring this chemistry rely on specialized mechanisms
➢ most kinetic studies focus on atmospheric conditions

✓ Objectives: "Bridge the gap"
➢ temperature dependent ethylene ozone oxidation from 300-1000 Kelvin
➢ exploring the shift from ozone-assisted low temperature chemistry to

intermediate oxidation chemistry
➢ isomer-specific identification and quantification of intermediates
➢ highlight areas for improvement for future LTC modeling

✓ Outcomes:
➢ detailed chemical understanding of the ozone-assisted low-temperature

oxidation of ethylene
➢ insights into the Criegee Intermediate reaction network that can be related to

formation of highly oxygenated species and SOA
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Experimental Details
Molecular-beam mass spectrometry after sampling from a jet-stirred
reactor

MFC

M FC

MFC

MFC

(ozone Generator)
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K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374

A. C. Rousso et al., J. Phys. Chem. A, 2018, 122, 8674-8685
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Experimental Details
Molecular-beam mass spectrometry after sampling from a jet-stirred
reactor

oven

preheated gas lines

jet-stirred reactor

quartz
nozzle

I time-of-flight
,41/ tube

water-cooled
stainless steel

reactor chamber

0 Gi-T_P#.
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molecular
beam

VUV photon
beam

differentially
pumped
chamber

s/ orthogonal extraction reflectron
time-of-flight

s/ detection limit: —0.5 ppm

s/ mass resolution mlAm — 4000

s/ electron and photon ionization
(at the Advanced Light Source)

s/ continuous ionization, rapid
(35kHz) ion extraction
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K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374

K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Experimental Details
Molecular-beam mass spectrometry after sampling from a jet-stirred
reactor
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CI 2% ethylene, 12% 02, and 86% argon (cp = 0.5)

❑ p = 0.92 atm (700 Torr)

CI residence time = 1.3 s

CI 1000 ppm ozone addition

❑ T = 300-1100 K

—M—JSR-sampled PIE for m/z = 46.005 (CH202)

— PIE of 1,3-dioxirane

- — PIE of formic acid
' — weighted sum of the individual PIES
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Ozone Thermal Decomposition

➢ model for this work: HP-Mech with the addition
of an ozone submechanism (Zhao et al., Combust. Flame,
2017, 183, 253-260)

➢ IUPAC global rates added to simulate C2H4 + 03
reactions

➢ ozone thermally decomposes with temperature
by 600 K

➢ model accurately predicts ozone concentration

➢ fuel reactions are overpredicted at room
temperature

➢ trends beyond 600 K are initiated by 0 atom
addition, not ozonolysis

1 5x10-3

03 Consumption

1 2x10-3-

3.0x10-4-

0.0 _

300

03 Decomposition

 HP-Mech.

• experimental data

C2H4+03 Ozonolysis

- HP-Mech.
• experimental data
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Temperature / K

A. C. Rousso et al., J. Phys. Chem. A, 2018, 122, 8674-8685
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Low-Temperature Oxidation of Ethylene
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➢ clear LTC and NTC chemistry regimes, caused by ozonolysis
➢ model predicts high temperature chemistry fairly well
➢ IUPAC rates: do well at atmospheric conditions, but clearly missing reactions at higher temperatures
➢ to understand what is missing, we must identify and verify other species in the reaction mechanism not

captured by the model

o A. C. Rousso et al., J. Phys. Chem. A, 2018, 122, 8674-8685
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Low-Temperature Oxidation of Ethylene
Identification of the C2H403 Intermediate
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.4,ZHOOCH2CHO conformers

calc. IE of lowest

Venergy conformer
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➢ the calculated IE of the lowest
energy conformer of
hydroperoxy-acetaldehyde
(KHP) is 9.76 eV

➢ CCSD(T)/CBS//M06-2X/cc-
pVTZ level of theory

➢ theoretically predicted as the
most stable structure on the
potential energy surface
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A. C. Rousso et al., J. Phys. Chem. A, 2018, 122, 8674-8685
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Low-Temperature Oxidation of Ethylene
Oxygenated LTC Intermediates

➢ Major intermediates identified that were either drastically
underpredicted or not present in the current model

➢ Acetaldehyde concentration begins to grow again immediately
after the NTC ozone regime

➢ Suggestive of O radical chemistry due to ozone thermal
decomposition

IE Threshold / eV
Cross Sections/Mb (Photon

Ener: /eV)

CH3OH Methanol 10.84 3.6 (11)

H202 Hydrogen peroxide 10.58 4.4 (11.5)

CH2C0 Ketene 9.62 24.8 (10.5)

CH3CHO ethenol/acetaldehyde 9.33/10.23 7.4 (10.5)

C2H5OH Ethanol 10.48 4.9 (11)

CH302H methyl hydroperoxide 9.83 2.4 (10.5)

HOCH2CHO hydroxy-acetaldehyde 9.98 6.1 (10.5)

C2H502H ethyl hydroperoxide 9.61 5.72 (10.0)

HOOCH2CHO hydroperoxy-acetaldehyde 9.80 5.0 (10.5)
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Criegee Intermediate Interactions
➢ at close to ambient temperatures, many larger highly

oxygenated species were detected

➢ most peaks can be explained by sequential addition
reactions of the Criegee Intermediate

SOA formation
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Criegee Intermediate Interactions
➢ 11 distinct chains were observed in this work

➢ first additions (blue) were all identified and quantified using PIE scans and calculated ionization
energy c6H1208
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A. C. Rousso et al., Phys. Chem. Chem. Phys., 2019, 21, 7341-7357
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Conclusions
V Major species and intermediates for ozone addition to ethylene were

identified in the low and intermediate temperature regimes from 300 — 1000 K

➢ Distinct "LTC" chemistry was seen below 450 K due to ozonolysis

➢ NTC behavior between 450 and 600 K - where ozone is completely decomposed

V Key intermediates in the Criegee mechanism were identified and quantified.

➢ KHP was found to be the most stable product of C2H4 + 03 reaction

V Modeling results using HP-Mech and IUPAC reactions rates

➢ decent prediction of product species at room temperature, but becomes more
inaccurate at higher temperatures

➢ missing reactions for low and intermediate temperature modeling of this system

V Network of Criegee Intermediate adducts was identified and quantified

➢ covering CI reactions with a variety of functional groups

➢ up to 4 consecutive CI additions were observed

0
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