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2 I Models Bridging Length Scales
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4 Motivation: Additive Manufacturing (AM) Defects Can Lead to Large Performance Variability
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Can we predict performance and failure of specific AM parts without explicitly

meshing pores?
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5 I Sandia Fracture Challenge: Blind Predictions of Ductile Failure
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6 I Bammann-Chiesa-Johnson (BEL) Constitutive Model for Plasticity
I

• Based on work by Bammann et al. 1003, Brown and Bammann 2012

• History-dependent viscoplastic internal state variable model

• Stress is dependent on damage 4) and evolves according to

6 if = EE 1 4) 4) a i j + E(1 — 0)(ei; — er;)(

• Flow rule includes yield stress and internal state variable for hardening

0-e 

K
eP = sinh(Y + 1)

I

• The isotropic hardening variable K evolves in a hardening minus recovery form.

(Tr n
= K — — riciK)ep

Johnson et al. IJF (Accepted)



7 Fracture Surfaces Indicated Both Existing Pores and Pore Nucleation

WD = 18.8 min Signal A = SE2 Width = 57.08 pm

Void Nucleation 

Fine scale voids (< 1pm) indicate nucleation

, 4 4 7t T J3
1) = 77ep (IVi 

27 J2 
[- - + IV2 ±

d 2

Void Growth 

Pre-existing voids captured by void growth

3 P (1 — Or 27-n + 1 o-, _1

2e 1 — 
(1 — °)rn+1 sinh [

2 (2m — 1) (p) 
(b =

(p) 
ge

Total Damage 

111)v 
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(Horstemeyer B Gokhale 1999) Johnson et al. IJF (Accepted)
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8 Incorporating Porosity as Initial Damage
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9 I Calibration Results for High Throughput Tensile Testing
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• A parameter set was calibrated for each longitudinal tension test
• Transverse and notched tensile data were not used due to time constraints
• FEA performed in Sierra/SM
• Calibration performed using Dakota and MatCal (Kyle Karlson)
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10 Porosity Overlaid on Duarter-Symmetry Challenge Geometry
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I11 Blind Performance Prediction
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12 I Different Porosity Distributions Affect Crack Path
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• Porosity seed indicated by snumber, i.e. s123 is a different realization than s127517
• For the same calibration number (Cal 1), a different porosity seed yields a different crack path
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Modeling the Effect of Pores and Surface Roughness From High-Resolution CT Scan in
13 Follow-up Investigation

Displacement (mm)

Simulation results from —13 million element
meshes generated from CT scans.

Slide Courtesy: Kyle Karlson, Guy Berge(



Ongoing Work: Further Examining Validity of Initializing Local Damage Model Based on Void
14 Overlay

RVE Simulations Investigating Pore Effects

A Tale of Two CT's

5

29 um resolution
1.9 um voxel size

25 0)
15.6 um resolution
2.5 um voxel size

• Approach: Refine mesh of parts from high resolution CT scans to approach limit of
explicitly meshed pores (many elements within a pore)

• Where does populating high local damage for pore locations break down?

T. lvanoff, D. Moore, J. Carroll , J. Madison
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1 5 1 Ongoing Work: Investigating Design Effects on Performance
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16 Conclusions

• AM Materials often have significant material variability

• Part performance and failure can be predicted using existing tools

➢ Part geometry can be used as a tool for flaw tolerance

• Significant scatter in tension data may not translate to scatter in part performance

• Porosity can possibly be accounted for using a damage formulation

• Different defect structures affect crack initiation and propagation

Future Directions

• Further examining using local damage model to represent spatial porosity

• Investigating effects of surface roughness

• What can be done with coarse DT scans?
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