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4 I Motivation: Additive Manufacturing (AM) Defects Can Lead to Large Performance Variability
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Can we predict performance and failure of specific AM parts without explicitly

meshing pores?

\‘
S
© |

: ; 0 i
800 900 1000 1100 12001300

Yield Strength, MPa

1000

1100 1200 1300 1400 081
Ultimate Tensile Strength, MPa

2 3 4567830 15
Strain at failure, %

1600
1400}

1200

jany
o
o
o

8001 !
600
400|

Engineering Stress (MPa)

N
o
o

l
Build 2

Build 5

6 8 10
Engineering Strain (%)

12

14 16

Boyce et al., Advanced Engineering Materials 2017



5

Sandia Fracture Challenge: Blind Predictions of Ductile Failure
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6 I Bammann-Chiesa-Johnson (BCJ) Constitutive Model for Plasticity

=  Based on work by Bammann et al. 1993, Brown and Bammann 2012

= History-dependent viscoplastic internal state variable model

= Stressis dependent on damage ¢b and evalves according to
. (E ¢  .p
O-ij — (E — m) O-ij + E(]. — (]5)(61] — Eij)

= Fow rule includes yield stress and internal state variable for hardening

€

— sinh( O¢ 1)
p = S0 Y+«

= The isotropic hardening variable k evolves in a hardening minus recovery form.

K = K‘%-i- (H — Rgk)é,

Johnson et al. IJF (Accepted)



7 I Fracture Surfaces Indicated Both Existing Pores and Pore Nucleation

Void Nucleation

Fine scale voids (< |um) indicate nucleation
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Void Growth

EHT =10.00 kv WD =188 mm Signal A = SE2

Pre-existing voids captured by void growth

. 2.1_(1_¢)m+1.
o= 36 1=9)" sinh o1 o

Total Damage
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(Horstemeyer & Gokhale 13939) Johnson et al. IJF (Accepted)

}_| EHT =10.00 kv WD =188 mm Signal A = SE2 Width = 670.9 um




Incorporating Porosity as Initial Damage
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o I [alibration Results for High Throughput Tensile Testing
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A parameter set was calibrated for each longitudinal tension test
Transverse and notched tensile data were not used due to time constraints

FEA performed in Sierra/SM
Calibration performed using Dakota and MatCal (Kyle Karlson)

Boyce etal., Adv Eng Mat 2017, Salzbrenner et al. JMPT 2017 [
Johnson et al. IJF (Accepted) )



10 | Porosity Overlaid on Quarter-Symmetry Challenge Geometry
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Multiple porosity initializations were used to capture uncertainty in performance




11 | Blind Performance Prediction
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12 I Different Porosity Distributions Affect Crack Path

(a)

s123 Cal 1

(b) s127517 Cal 1

(c) &

s123 Cal 11

* Porosity seed indicated by snumber., i.e. s|23 is a different realization than sl2 7417
e For the same calibration number (Cal 1), a different porosity seed yields a different crack path

Johnson et al. IJF (Accepted)



Modeling the Effect of Pores and Surface Roughness From High-Resolution CT Scan in
13 | Follow-up Investigation
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Simulation results from ~13 million element
meshes generated from CT scans.

Slide Courtesy: Kyle Karlson, Guy Bergel



Ungoing Work: Further Examining Validity of Initializing Local Damage Model Based on Void |
14 1 [verlay

_ — Reproducing Tension Specimen Failure I
RVE Simulations Investigating Pore Effects
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explicitly meshed pores (many elements within a pore)
 Where does populating high local damage for pore locations break down?

T. Ivanoff, D. Moore, J. Carroll , J. Madison
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* Hollow LPBF 3IEL stainless steel tubes have different "defects” designed into wall thickness:
 |/4 diameter crack
 7mm cube through-hole
 [.2 mm cubic internal void

o |nternal void design has greater ductility than tube with no flaw > design can control performance



16 1 Conclusions

AM Materials often have significant material variability

Part performance and failure can be predicted using existing tools

> Part geometry can be used as a tool for flaw tolerance

Significant scatter in tension data may not translate to scatter in part performance

Porosity can possibly be accounted for using a damage formulation

Different defect structures affect crack initiation and propagation

Future Directions

Further examining using local damage model to represent spatial porasity

Investigating effects of surface roughness

What can be done with coarse CT scans?
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