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Abstract—Technological advances have enabled exponential
growth in both sensor data collection, as well as computational
processing. However, as a limiting factor, the transmission
bandwidth in between a space-based sensor and a ground
station processing center has not seen the same growth. A
resolution to this bandwidth limitation is to move the pro-
cessing to the sensor, but doing so faces size, weight, and
power operational constraints. Different physical constraints
on processor manufacturing are spurring a resurgence in neu-
romorphic approaches amenable to the space-based operational
environment. Here we describe historical trends in computer
architecture and the implications for neuromorphic computing,
as well as give an overview of how remote sensing applications
may be impacted by this emerging direction for computing.
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I. INTRODUCTION

In a classic computer architecture, the von Neumann
bottleneck describes the computing limitation arising due to
communication limits between processing and memory. This
need to move data from one location to another for ensuing
computation is analogous to a key challenge facing space-
based remote sensing paradigms. Great advances in sensor
technologies have enabled faster collection of larger regions
at greater resolution. And while computational advances
have also seen exponential growth, the limiting factor is
transmitting information from the space-born sensor to earth
for the subsequent signal processing.

Rather than the von Neumann bottleneck, space-based
remote sensing faces a transmission bottleneck from the
sensor to ground station processing. A remedy to this chal-
lenge would be to move the computation to the sensor, but
doing so faces size, weight, and power (SWaP) constraints.
The large scale data centers enabling impressive computing
capabilities require resource budgets unreasonable for space
collection assets.

Due to the arrival of physical scaling limits, the design
of computer architectures is now looking to novel, more
efficient designs. By reflecting upon trends in the history
of computer architecture, we see how these advances are
enabling the resurgence in neuromorphic computing and
how it can play an enabling role in remote sensing. As
follows, we provide a brief historical synopsis of the trends

in computing followed by a description of remote sensing
applications and how the future directions of neuromorphic
computing can impact remote sensing computation with
some benchmark results highlighting the potential impact.

II. BACKGROUND
A. Computer Architecture History

With the invention of the transistor and the ensuing
growth in the microelectronics industry, the field of computer
architecture saw a flurry of activity in the 1960s through
early 2000s exploring how to maximize the utility of the
underlying hardware. Central to these advances, the Moore’s
Law phenomenology enabled a doubling of transistor density
every two years (note Moore’s original forecast stated every
year but was revised in 1975) [1]. Coupled with this growth
in computational density, Dennard scaling observed that with
the reduction in scale of transistor dimensions, power density
stays constant [2]. Consequently, together this equates to
doubling computational performance for the same power
budget.

Over this time, computer architects explored several de-
sign choices for how to best utilize this boon in under-
lying computation infrastructure. One of the first design
stabilizations was the development of a core instruction set
architecture (ISA). An ISA provides a standard by which
software communicates with and specifies the actions for
the underlying hardware to take. Integral to the ISA is a
coupling with the design of system infrastructure such as
the width of communication buses, the size of addressable
memory, as well as how many unique instructions may be
encoded.

Intrinsic to the architectural exploration of how many in-
structions may be incorporated into a model is the complex-
ity of the instructions. In other words, simpler instructions
encapsulate simpler operations such as additions, and more
complex instructions often necessitate a compound set of
simple instructions such as performing multiplication as a
sequence of additions. This complexity argument took hold
in the form of whether to use a reduced instruction set
computer (RISC) or a complex instruction set computer
(CISC), and has performance implications for the execu-
tion hardware. In particular, this impacts the size of the
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instruction store, sizes of memory caches, the sophistication
of the program interpreter, as well as runtimes. The Intel
x86 architecture is a prominent CISC architecture, and many
mobile and non-personal computer devices employ some
form of RISC processor. Other designs have also explored
specialized instruction types, such as very long instruction
word (VLIW), to optimize hardware designs and often target
the acceleration of certain applications.

Beyond how to encode instructions and the accompanying
storage and communication choices, computer architectures
in this era also explored parallelization of processing. This
lead to the development of instruction level parallelism
(ILP), as well as pipelining. These techniques strive to
alleviate the imbalance between processing speeds and com-
munication limitations by queuing up predicted next data or
instructions for the processor to compute upon. Doing so
introduces a great deal of sophistication for forecasting the
program and data flow of a computation. Additionally, the
expansion to multiple cores furthers parallelism. However,
not all computation can be fully parallelized and rather has
some serial steps which limit the achievable maximum par-
allelization of the entire application. This bound is observed
as Amdahyl’s Law.

Over time, the enabling physical laws reached an end, or
are nearing one. Around 2010, Dennard scaling reached its
pinnacle. And Moore’s Law has been slowing significantly
from the year 2000 onwards. Together, while these two laws
were both incredibly enabling in revolutionary computer
architectures, they also are still shaping current computer
designs today. The pursuit of parallelization of processing
as a method of addressing limits to clock frequency is
constrained by the ability to power a large amount of cores.
Unable to advance computing by simply performing more
computation over time, whether due to the speed of exe-
cution or the parallelization of the computation, introduces
a pursuit of alternative computing paradigms. In particular,
next we will describe neuromorphic computing and how
such approaches may be impactful for the domain of remote
sensing. For a more detailed history of computer architecture
refer to [3], [4].

B. Neuromorphic Computing

The history of neuromorphic computing parallels much of
the progression of the field of computing at large. Inspired
by the computational feats brains perform, researchers have
explored creating hardware and algorithms mimicking neural
principles as long as computing machines have been con-
structed. Figure 1 illustrates a timeline highlighting several
prominent neuromorphic pursuits over time.

In 1943, mathematician and logician researchers Warren
McCulloch and Walter Pitt created a foundational mathemat-
ical model of neural processing, the namesake McCulloch-
Pitt neuron [5]. And subsequently, hardware was developed
using manufacturing capabilities of the time instantiating

their model. Extending this model lead to the Perceptron
model and its hardware instantiation in the form of the Mark
1 perceptron [6]. With mathematical advances resolving
critiques presented by Minsky and Papert [7], the 1980s saw
the prominence of the backpropagation learning rule [8], as
well as the development of the foundational convolutional
neural network model [9]. The 1980s and early 1990s
saw a corresponding resurgence in neuromorphic hardware
development with several efforts lead by Bell Labs [10] [11].
Additionally, Carver Mead pioneered the usage of advanced
manufacturing technologies such as analog VLSI to develop
neuromorphic systems [12]. In the 2000s, there has been
a global resurgence in large scale neuromorphic systems.
These efforts include SpiNNaker [13], IBM TrueNorth [14],
and Intel Loihi [15]. Additionally, many domain specific
architectures and accelerators have also been emerging such
as the Google Tensor Processing Unit and the Intel Neural
Compute Stick.

1943 —}— McCulloch & Pitts
1960 —#— Perceptron; ADALINE
1988 —f— Mead - VLSI
1991 —f— Net32k; ANNA
2008 —#— BrainScaleS
2009 —#— Neurogrid
2011 —#— SpiNNaker
2013 == IBM TrueNorth
2017 —f—Google TPU
2018 == Intel Loihi

v

Figure 1: A non-exhaustive timeline depicting several prominent architectural ap-
proaches in the pursuit of neuromorphic computing

The incredible advances general purpose computing ap-
proaches have achieved in parallel to the pursuit of neuro-
morphic approaches have historically overshadowed neural-
inspired computing due to being the prominent mode of
computing. However, the progression of advances employed
in general processors has followed many of the trends fun-
damental to neuromorphic, and computing pioneer John von
Neumann identified many of these tenets in his unfinished
1958 last work “The Computer and the Brain” [16].

Similar to the CISC versus RISC explorations, various
neuromorphic architectures explore how complex of a neu-
ron is needed. In neuromorphic approaches, this exploration
includes neuron models (such as variations to the leaky-
integrate and fire (LIF) neuron), as well as the degree
of connectivity between these computational units. The



TrueNorth architecture provides one million neurons per
chip, but constrains the connectivity from one neuron to
another to 256. Alternatively, the SpiNNaker architecture
allows arbitrary connectivity. And the Loihi architecture
employs configurable complexity as a resource tradeoff
enabling a greater number of simpler neurons or a smaller
number of more complex neurons.

Just as parallelism has been pursued in traditional ar-
chitectures, the intrinsic parallelism of the brain motivates
neuromorphic architectures with many simple, parallel pro-
cessing neural units. To make use of these parallel units,
analogous to the architectural efforts of pipelining and ILP,
neuromorphic architecture considerations often explore costs
associated with moving around data or weight parameters
[17]. For example, in a convolutional neural network (CNN),
computing the namesake convolution operation requires
either keeping the convolution filter weights in memory
and passing a cascade of inputs through, or alternatively
performing all of the processing for the various filters
on an input patch before loading the next input patch.
Additionally, many emerging architectural approaches are
exploring the co-location of memory and processing as a
non von Neumann computing architecture.

While digital CMOS technology has been the prevalent
device technology in computing, neuromorphic approaches
have historically explored the merits of alternatives and
continue to do so as digital limitations are being reached.
Accordingly, neuromorphic approaches are being pursued
based upon both digital and analog computation, as well
as looking towards novel technologies such as memristors
and optical approaches. These varying architectural pursuits
strive after different computational advantages. For example,
analog processing as well as optical communication both
pursue accelerated computation. Additionally, rather that op-
erating in a traditional clocked manner, some neuromorphic
architectures operate asynchronously or in an event-driven
manner. Doing so often enables energy savings as the archi-
tectures are able to only perform computation as needed.
Relatedly, spiking neuromorphic architectures employ an
event-driven communication paradigm where neurons which
exceed their activation threshold then transmit single bits,
spikes. Additional information may be represented by the
timing of spikes as well as the associated encoding scheme
employed.

Effectively, while classic approaches to computation have
reached limitations to scaling laws, driving the need for al-
ternative non von Neumann approaches and domain specific
architectures, neuromorphic computing has experienced a
resurgence as a promising answer. While not necessarily an
optimal approach to all computational needs, the advanta-
geous properties of neuromorphic computing, such as energy
efficient computation, make it a promising transformative
computational approach for domains such as remote sensing.
For more detailed review of neuromorphic computing see

[18] [19] [20].

III. REMOTE SENSING

As an alternative paradigm to computing, rather than
executing legacy algorithms employed on conventional ar-
chitectures, the novel architectures neuromorphic approaches
provide require alternative algorithmic formulations to lever-
age the capabilities of the emerging architectures. In this
section we describe the primary classes of sensors and appli-
cations that space-based remote sensing employs, providing
an understanding of how novel algorithms may be developed
to utilize these neuromorphic architectures.

A. Sensors

In space-based sensing, there are three general classes of
sensors: non-imaging sensors, framing focal plane arrays,
and event-driven focal plane arrays. Non-imaging sensors are
used in situations where spectral and/or intensity information
is predominantly of interest, and spatial information is
less important or can be inferred by means other than a
single sensor’s measurement. Non-imaging sensors can have
very high sampling rates, and therefore excellent temporal
resolution, without overwhelming downlink data constraints.
Focal plane arrays contain multiple sensing elements or
pixels, and hence add spatial information to spectral and
intensity information. A frame focal plane array collects
data much like a movie camera. In this sense, a snapshot
or readout is taken every time interval, creating a 2D array
of timestamped pixel measurements. A disadvantage of this
design is that the volume of sensor data increases rapidly
as the sampling rate increases. One data volume mitigation
strategy is to identify localized regions of interest within the
larger sensor, and read out only information from this sub-
array. This windowing strategy requires additional system
complexity to trigger on events of interest and appropriately
shape the sub-array.

Framed
Sensor
>t
] Framed
Sensor
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Figure 2: Illustration of the framed sensor paradigm where 2D regions are collected
repeatedly over time. As shown in the bottom half of the figure, a region of interest
may be focused upon to enable greater transmission throughput of just the region of
interest.



Event-driven focal plane arrays are one implementation
of this windowing strategy. The logical extreme of an event-
driven focal plane array is a spiking sensor, where each pixel
simply fires once the environmental energy it absorbs and
(leakily) stores exceeds a threshold.

B. Data

The three broad types of space-based sensors provide
different data products. Notional examples of this data are
illustrated in Figure 3. The left-most plot shows the ampli-
tude versus time data typical of non-imaging sensors, shown
for two different spectral bands. This sort of representation
is actually a post-processed output, where sensor readouts
across time have been accumulated. An instantaneous read-
out will yield only a single value. As mentioned above, very
high temporal resolution is much more achievable with non-
imaging sensors given typical communication and readout
constraints for space-based systems. This comes at the cost
of losing spatial information (from one sensor).

The center image shows a single instant in time of a
framing sensor, with varying input levels shown as various
shades of grey between pure white and black. Physical
sensors must read values off the array, often sequentially,
so the ‘instant’ associated with a given data frame may
differ slightly across the array. (In digital photography, this
is termed the ‘rolling shutter’ effect.) Due to readout and
communication constraints, space-based full framing sen-
sors typically operate much slower than their non-imaging
counterparts. Furthermore, the higher the spatial resolution
of the sensor (the more pixels in the array), the more
data is generated. This can lead to a trade-off between
spatial and temporal resolution of the data. One way to
get around this is to only read off areas of interest from
the array. Typically, these regions of interest are defined
by regions of rapid change. As such, this requires much
more sophistication in the on-array processing to isolate and
readout the ‘interesting’ data. However, the benefits of this
method allow for much higher temporal resolution without
reducing spatial resolution.

The right-hand plot is also an instantaneous representation
of an entire focal plane array. However, this array is a spike-
based sensing array, meaning that the produced data is event-
driven and single bit. Individual pixels can either produce a
spike (shown as white) if information needs communicating,
or nothing (black). Depending on the design of the spiking
sensor, the output of spikes from an individual pixel can
either be clocked or asynchronous. If the spikes are output
on a clock, then the figure represents one time instant.
However, if the sensor has asynchronous spiking capabilities,
this image actually represents a small time interval, rather
than a true ‘instant’ as spikes typically occur as soon as a
per-pixel threshold is exceeded, rather than on an external
polling. Hence spikes are not edge aligned in time, and the
activation of multiple spikes as shown in the plot implies

we are looking at the array over some (small) time interval.
This method can provide readout of the entire array at very
high speeds, as data is only generated when necessary, and
it is single bit. This is very amenable to space-based readout
and communication constraints.

Figure 3: Notional illustration of the form of data from the three primary types of
remote sensors: typeNon-imaging (left), Framing (middle), and Spiking Data (right).

With the growing interest in applications of machine
learning advances to remote sensing data, various publicly
available datasets (some with challenges) are available. For
example, SpaceNet is a collection of satellite imagery en-
compassing several large cities around the world collected
by DigitalGlobe satellites. Examples of non-imaging (time-
series) data include the Kaggle Exoplanet search [21] and
the StarLightCurves dataset [22]. Due to the relatively recent
development of event-based focal plane arrays for space-
based systems [23], the authors of this paper are not aware
of a publicly available dataset for spiking sensors, as of yet.

C. Applications

As is often the case with interdisciplinary efforts, the
fields of machine learning, remote sensing, and signal pro-
cessing have some overlapping terminology to describe the
fundamental problems of space-based remote sensing appli-
cations which perform computation upon the sensed signal
data. Here we provide an overview of the application areas
so that neuromorphic research can develop algorithms to
address the fundamental problems rather than focusing upon
specific canonical algorithmic approaches. And likewise,
remote sensing researchers can utilize the signal processing
breakthroughs being made in fields such as machine learning
(ML) and deep neural networks (DNN) in particular.

Rather than characterizing application areas by the means
in which a computation is achieved, instead we describe
three broad application areas which jointly capture the
problem space of remote sensing tasks and computational
techniques ML techniques can address. These are: signal
processing, signal classification, and signal understanding.
We denote each of these classes in terms of signals, to
broadly capture that they can encompass a variety of modal-
ities of interest such as the various sensor types described
above. Others have provided similar taxonomies with greater
granularity focusing upon specific applications such as in
[24]. As follows, we will describe each of these classes of
application with examples to further articulate each of them.



1) Signal Processing: By signal processing we are refer-
ring to the manipulation or transformation of a sensed signal.
An abundance of mathematical transformations exist, and
the desired outcomes of the signal processing computation
includes manipulating the signal to a representation more
amenable to subsequent processing. Examples include noise
reduction or dimensionality manipulation. For space-based
remote sensing this includes tasks such as the alignment of
sensed images or cleaning up signal to noise ratios.

Neural network techniques are increasingly being em-
ployed such as for signal denoising or enhancement, sharp-
ening, dimensionality reductions and encoding, etc. In some
cases, these signal processing steps are innate to the early
processing layers of a DNN. Figure 4 illustrates an example
of a neural-inspired denoising approach from [25]. Part a)
of the figure shows the original image from the CalTech 101
dataset, and b) is a noisy version of the original image with
10% noise added. Subfigures c¢) and d) then show the result
of two denoising approaches. Namely, in c¢) a traditional
median-filtering technique has been applied, and in d) a
spiking neural approach is employed.

Noisy

a) Original b)

Figure 4: Example illustrating denoising neural network processing

2) Signal Classification: By signal classification we are
referring to the general suite of operations which attribute
a label to a signal. Both ML and signal processing have
developed an abundance of such techniques. In the scope
of space-based remote sensing, signal classification applica-
tions are broad but generally consist of the detection of items
of interest in a sensed area. This may be object detection,
land use determination, single pixel labeling, etc.

Signal classification is one of the most well-known ap-
plications of neural networks. Advances in DNNs have

increased the accuracy of such techniques, motivating the
development of novel algorithm architectures classifying
every single pixel, such as semantic segmentation shown in
Fig. 5, as well as operating on high dimensional inputs such
as hyperspectral. Convolutional neural networks (CNNs)
often serve as the core computational approach of signal
classification DNNS.

Figure 5: Semantic segmentation examples applied to COCO dataset trained to label
the individual pixels of people in the various scenes

3) Signal Understanding: By signal understanding we
are referring to the determination of higher order effects in
a sensed signal. Beyond simply determining the presence
of a feature in a signal, this includes relationships across
space and time. For example, in remote sensing this includes
tasks such as tracking items over time or space as well as
higher level understanding of a sensed domain based upon
the composition or interactions of detected items.

Repeated application of DNN signal classifiers to a series
of inputs is one method of observing trends for signal un-
derstanding. Additionally, more advanced network structures
can intrinsically include recurrence or other features which
endow the network with the ability to process sequences of
inputs. Figure 6 depicts the output of tracking a golf club
head over the course of a swing.

A wealth of emerging research has focused upon applying
DNN or deep learning techniques to satellite data across
the three general classes of applications described here.



Figure 6: Example of three frames from the HMDBS51 dataset in which the red boxes
are tracking the golf club head over time across the swing of the golfer

Excitingly, such techniques are seeing compelling results in
terms of accuracy but are often computationally expensive
and best suited for ground station processing. Alternatively,
neuromorphic approaches provide promise for moving such
computation to a sensor. An example monitoring processing
pipeline is shown in Fig. 7. In this illustration, a weather
monitoring system might be observing meteorology trends
over time. First pixel data is remotely sensed by a satellite.
Then under the category of signal classification, the pixel
data is analyzed to identify events which and subsequently
classified. This might entail capturing sudden light intensity
variations during a lightning storm and observing their sig-
nature pattern compared with general background lumines-
cence variability. Comprehending the temporal persistence
of illumination variation can then provide signal understand-
ing of a lightning storm. Lastly, rather than transmitting all
collected pixel data down to earth, only the reconstructed
pixels pertaining to lightning storms can be transmitted as a
result of performing processing at the sensor as an enabling
capability of neuromorphic processing.

Pixel Data

Event Detection

Signal Classification

Scene Understanding

Signal Reconstruction

Communicate Results

Figure 7: Illustration of a space-based remote sensing pipeline beginning with pixel
collection and the ensuing processing steps to communicate a result of the observed
phenomenology

For an extensive survey of deep learning approaches and
applications to remote sensing see [26].

IV. RESULTS

An example of the potential impact neuromorphic ap-
proaches may have for remote sensing is illustrated by Fig.
8 depicting performance in frames per second processed
per watt bench-marking across a suite of architectures. In
this assessment, the various architectures are computing
an image processing task on 28x28 tiles representative of
identifying important chips out of a large field of view in a
space-based remote sensing task.
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Figure 8: Comparison of various computational architectures in terms of frames per
second per watt in a small chip image processing task. Intel NCS denotes the Intel
Neural Compute Stick. Parenthetical denotations indicate a single stick as well as
using three sticks. NCS2 denotes the second version of the Intel Neural Compute
Stick with results for both streaming and batching modes. The STPU FPGA is a
Sandia Labs developed Spiking-Temporal Processing Unit architecture implemented
on FPGA [27]. The PYNQ-Z1 BNN is a FPGA implementation of FINN [28]. TN
denotes the IBM TrueNorth architecture with a single chip as well as chips.

As shown, the far left architectures (barely visible at
under a hundred FPS/W) are classic architectures (CPUs
and GPUs). Moving to the right, the next few architectures
are neuromorphic accelerators as well as FPGA implemen-
tations of architectures. Finally, the rightmost benchmarks
are two prominent spiking neuromorphic chips achieving
several thousand FPS/W. Effectively, as shown, accelerators
tailored to ML computational domains are able to improve
upon general purpose traditional architectures, but more
significantly, spiking neuromorphic approaches are showing
on the order of 100x improvements.

As another example of the impact neuromorphic pro-
cessing may have on remote sensing computation, con-
sider scientific computing. Traditionally, large simulations
require a HPC analogous to ground station processing data
centers. The immense computational power afforded by
these clusters requires significant energy consumption. As
an example, Fig. 9 depicts scaling requirements of a particle
diffusion simulation. Several thousand nodes are required
to perform large scale, high fidelity simulations. Each of
these nodes requires on the order of 80W each equating to
a very large power budget. Alternatively, Severa et al. have
shown that spiking neural algorithms may be employed to
compute diffusion equations as a markov random process



[29]. Coupling such an algorithmic approach with neuro-
morphic hardware, designed to perform such computations
efficiently, has the potential to enable comparable large
scale computation on hardware consuming a fraction of the
power. This shows evidence of how large scale computations
traditionally requiring extensive ground station processing
can rather be reduced to a deploy able resource constrained
operational environment through advances in neural inspired
algorithms and architectures.
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Figure 9: Plot of node scaling across cluster size as a function of particle movement
on the SPARTA benchmark. Chama and Mira are two respective HPC architectures.
For more information see: http://sparta.sandia.gov/bench.html

V. CONCLUSION

Meeting a need for alternative, non-conventional comput-
ing approaches, neuromorphic techniques are also emerging
as a technique enabling computation to be performed under
resource limitations in resource constrained conditions such
as that of space-based remote sensing. These techniques
provide room for growth in both algorithmic and archi-
tectural implementations. Several compelling neuromorphic
architectures exist using technologies of today, but novel
devices and architectures can also be incorporated in fu-
ture generation neuromorphic architectures. Advances in
DNNs are providing state-of-the-art performance across a
growing suite of remote sensing applications within signal
processing, signal classification, and signal understanding
domains. In a co-design manner, these emerging algorithms
and architectures can further inspire the development of
additional novel approaches. In particular, to maximize
the efficacy of such approaches, novel sensor technologies
may also be incorporated. Event-driven sensors are already
showing promise in enabling novel data representation and
transmission methods which neuromorphic approaches are
amenable to make use of. The integration of neural-inspired
sensors, algorithms, and architectures offers an opportunity
for complete system approaches. Following the trends in

general purpose computing architectures, the field of neu-
romorphic computing is well posed to provide advanced
processing under size, weight, and power constrains and
enable transformative processing capability at the sensor for
space-based remote computing.
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