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.| Overview

Developing a computational model to understand the
interactions between mesoscale phenomena driving gas bubble
morphology in materials

We will present

° Multiphysics of gas bubble morphology
° Analytical models of Eshelby Inclusions
> Numerical model - Phase Field

° Case studies of bubble morphology

° Summary and Future directions




Underlying Principals of Gas Bubble
.1 Morphology

Gas atoms are generated by various
radiation processes
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> Will diffuse and nucleate gas
bubbles in host materials

These bubbles can be found in
nuclear fuels, cladding materials,
storage systems, and many other
critical components

© Bubbles 1mp aCt key materlal Fig. 5. SEM micrograph of the intermediate phasal zone of irradiated U-Pu-Zr fuel
. (3 at.% HM burnup, length of the scale bar in the bottom of the figure indicates the
prop ertles length of 1 pum).
. D. Yun, et al., J Nuclear Mater, vol. 453,
° Result in reduced component op. 153-163, 2013,

lifetimes and component failure




‘ Gas Bubble Growth Physics

Complex multiphysics in to gas bubble

evolution
> Evolving two phase system
> Microstructure 1s complex

° Length scales span from nanometers
to microns

Y

o Timescales can be on the order of AR
M. Shaw, et al., J Nuclear Mater, vol.
seconds to decades 115, pp. 1-10, 1983,

°> Develop high internal pressures

° Surface and interfacial energies are
significant

° Anisotropic material properties can
impact growth and morphology

N. Hueging,et al., J Mater Sci, vol.
41, pp. 4454-4465, 2006.




.1 Eshelby Inclusions

Significant work has focused on misfit strains
from solid inclusions
° Driven by solutions to Eshelby equations

> Identifies bifurcation of particle shapes based on
strain energy versus surface energy
> Depends on material properties

Gas bubble evolution should be similar to pure

dilatational strain cases

> However, the misfit strain from a gas bubble should
be zero




.1 Phase Field: Cahn-Hilliard Model
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Problem domain (volume 2 = Q, U2, and surface I' =T, UT).

° Phase Energy Density !

[(n) = f(n) + 5Vn - k(n) Vn
° Phase Kinetics
on _

5 =V (MVu)+q




.1 Phase Field: Cahn-Hilliard Model

Ls

Fg

Problem domain (volume Q = Q, U, and surface I' =T'; UT).

° Anisotropic surface energies

v(h) =0 |1 — 25 € (0 - my) P H(n - my)]
M. Salvalaglio, et al., Cryst Growth Des, vol. 15, pp. 2787-2794, 2015.
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‘ Coupled Phase Field and Mechanics 1

°'Total Free Energy
W(u,n) = / (I(n) + g()W (w)) dV + / a-ya dS

Ly

T(u,n) = / I(n) + (W + pV - u) dV

> Weak form of governing equations

/w(ﬁ—q) dV+/wV-(MV,u) dV =0
Q ot Q

/Qwv - (—go — pVg) dV+/

I's

w(ga)-nd5+/ (g p)w-ndS=0
I's

> Implemented in deal.Il FE framework |



.1 Results
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Results - Anisotropy |

Isotropic




«1 Results Favor Spherical Shapes

For mechanical and surface energy properties
of relevant gas bubble material systems, we
find that both surface energy and elastic energy
favor spherical shapes

° Bifurcation seen in in Eshelby studies of solid
inclusions 1s not seen for gas bubbles

°Need to do a more exhaustive search for what
materials properties are needed to result in platelet
geometries




.1 New Hypothesis: Crack/Defect Propagation

w\

N. Hueging,et al., J Mater Sci, vol. 41, pp. 4454-4465, 2006.

° At these size scales, physically unable to reproduce shapes with
clasticity and chemical energy alone

> Experimental results show plate-like geometries at length scales
dominated by surface energy

° First order attempt to capture physics through brittle crack
growth




-1 Phase Field Fracture Model

(1—n)"
I1(n) = G, .
) =G ( 4 * |K| + V- k(n) V)
-Switched to Allen-Cahn kinetics
n
Ot H q

/’w(@—q> dV+/wM,udV:
Q ot Q

¥(u,n) = / (T(n) + g(m)W (u)) dV + / u-pn dS

Ly

° Crack evolution only driven by tension and cannot

heal




Single Bubble Evolution

C S22
02 04 O

MJIIIIIII]IIIIIII ||||||||||c|]'|'TQ,||,I|H _Eij?llllIIIIO|IIIIIIII2I?EI]| s
0.1 1 — P
-300 360




Multi-bubble Evolution




«1 Summary and Next Steps

°Summary
> Developed a phase field based formulation for pressure

driven bubble growth

° Investigated shapes and multi-bubble dynamics under
various anisotropies (elastic, chemical)

° Trying to link to observed experimental growth of bubbles
over decades in irradiated materials
> Next steps

° Studying the dynamics of bubble clusters and the potential
failure patterns of the underlying material

> Extension to include plasticity and stress driven growth
mechanisms
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Questions!







Surface Energy Anisotropy

More ot a numerical approach
° Many fitting parameters to

accommodate different surfaces  y(n) =y [1 — ZNe; (7 - 17

° Can be reduced to fit previous
forms

Assumes there are N minima

with directions m) +100],
0x+10], [00X1], [x1X10
+10+1 , [0x +1] [T1+ 1+1]
o ~8 for ZD and ~27 for 3D

> Each minima has a depth value
given by

> Each mmlmafbas width value
given by w;

o Heaviside function ensures that
negative direction values are not
counted twice

n
[foj (1) fof) (1] o) [1n) foa} (M1 [fo)

/B 7 o \
‘u‘o .°.

Figure 2. Examples of surface energy density from eq 7. (a—c) Plot
2D 7(6) functio: umthmmmaa 0 in/4 ((10) and (11) directio ns)
witha,=0Sand 7, = 1. (a) w;= B(d tted line), w; = 20 (dashed line),

andw 100 (solid line). (b) as in panel (a) with w, increased by a

factor 10. (c) as in panel (a) with @ 075foth0m1.mmum(d)
Three-dimensional 7(fi)-plot with minima along (100) and (111)
directions, @, = 0.5 and y, = 1, for three w, values. y(i) values are also
plotted as surface color map.
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Mesh Adaptivity

> Mesh refinement 1s based on the order parameter to
focus the finest meshes in the area of most interest




