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Evidence has been growing that the mantle transition zone
(MTZ) contains a significant amount of water ...

• MTZ = region between seismic discontinuities at 410-km (12 GPa) and 660-km (28 GPa) depths
• Low seismic velocities observed just above and just below the MTZ

• Partial melting could explain low velocities
• But present-day geotherm is below solidus of mantle minerals

• Polymorphs inside MTZ have high water solubility, those above and below do not
• If MTZ hydrated, then mantle convection can cause melt by dehydration

• Recent discoveries of water in deep-mantle diamond inclusions
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... leading to increased interest in equation-of-state (EOS)

3 measurements of silicate melts & glasses at MTZ pressures
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• "Densification" over some pressure range
• Anomalous compressibility
• Acoustic velocity depends weakly on pressure/density
• Structural modification without changing structure (coordination increases)

• H20 incorporated differently than into crystalline materials
• Fill interstitial voids and/or bond as silanol (Si-O-H) groups
• Reduces compressibility (stiffer compression response)
• Effect's dependence on pressure, temperature, composition unknown

• Hydration-dependence of elastic properties under quasi-isentropic (ramped)
compression needed to interpret MTZ-related seismic data

Z-Machine Fundamental Science Project to shock-melt then ramp 

• Complemented by pure-ramp experiments on Thor small pulser
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The Thor64 pulsed-power machine is a new facility at Sandia for
4 magnetically-driven dynamic shockless compression of materials

entral power-flow section
H204Rexolite4Kapton

• 64 "bricks" (2 capacitors + 1 switch) arranged in 8 towers

• Machine stores 51 kJ electrical energy when charged to 90 kV

• Switching all bricks synchronously delivers -2.5 MA to a standard load

• Stripline = parallel flat-plate electrodes shorted at one end

• Ramped Jx13 force induces ramped stress wave in electrode material

• Wave propagates to sample material, de-coupled from magnetic field

• Both electrodes loaded identically while symmetric

• Fiber-coupled, laser-based velocimetry (PDV, VISAR)
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Thor64's modular energy storage and transit-time isolation
5 allow simple yet fine control of the current pulse shape
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Each brick can be independently switched (in practice, trigger them in groups of 4)

Long cables 4 time isolation of switches

. 500-ns round-trip from brick to load and back = maximum spread in trigger times

. Vary loading rate by a factor of -10 by changing trigger times and load panel width
Increasing rise time decreases peak current 4 lower magnetic pressure for given load geometry
Decreasing stripline panel width increases magnetic pressure 4 higher dP/dt for given pulse shape

For shorter pulses -2.4 MA peak current...
10-mm wide stripline 4 -20 GPa

, 8-mm wide stripline 4 -30 GPa
. 6-mm wide stripline 4 -40 GPa
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Double-ramp pulse shapes, flat-topped pulse shapes, etc.
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Experiments have been performed on "dry" (100-ppm H20)
6 and "slightly damp" (400-ppm H20) Mg-Si02 glasses

Collaborating with Corning, Inc. to manufacture samples of hydrated silicate glasses
• Proprietary process based on pioneering work of R. F. Bartholomew et al. from 1980's

• Working on Mg-Si02, Na-Si02, and pure Si02 glasses with up to several weight-% water

• Samples available thus far for Thor experiments have been low-water (100/400 ppm) Mg-Si02

Six shots completed to date on Thor: 
1.6

HSGO1 - dry, 440 pm, 10-mm wide panel
• Long shaped pulse (avoid shock) 1.4

HSGO2 - dry, 693 pm
• Smoother pulse shape

HSGO3 - dry, 455 pm
• Shorter pulse, higher P

HSGO4 - damp, 444 pm
• Repeat last pulse

HSGO5 - dry, 465 pm
• 8-mm panel, higher P

HSGO6 - damp, 446 pm
• Repeat last pulse

PDV 4 channels
VISAR 8 channels
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Iterative Lagrangian analysis (ILA) determines stress-density
7 path from velocimetry of LiF-windowed "drive" and sample

backward
calculation
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inner
iteration
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• in-situ measurements 4 Direct Lagrangian Analysis (DLA)

• real measurements are free-surface or window-interface
• map measured u(t) into in-situ u*(t), then apply DLA
• map by iterative characteristics technique

>. referred to as Iterative Lagrangian Analysis (ILA)
➢ assumes single-valued o-x(p) material response

• Single-sample approach: use drive velocity to deduce sample input

S. D. Rothman & J. Maw (2006)
J.-P. Davis et al. (2014)

U output
in-situ

•
/

At(u

(ix material
response

Lagrangian analysis

= AXCL(u*)

t

;
thick sample
no window

•

I
d p du*

2
P PoCL
d 6C = poc Ldu*

Conservation of mass and momentum

Uni-axial strain condition
up = particle (mass) velocity
u* = "compression velocity" (mechanical-EOS variable)

ax = longitudinal stress (P = + 2a)13)

X= Lagrangian (initial) thickness

CL = Lagrangian sound velocity



8 I A couple details from application of ILA procedure to these data
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Determine driving pressure by backward integration
• equations of motion, EOS (neglect strength of Al)

• "equivalent" pressure to reproduce sample input w/o MHD

• valid until acoustic reverberation couples B-field to sample

• simulate sample input using same no-strength Al response

400 500

Outer iteration loop to recompute sample input
• Must extend CL(Le) beyond previous result to simulate

• Smooth cilu*) below -100 m/s

• Convergence typically in < 10 iterations
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9 I Some experiments had non-negligible bond layer thickness
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Bond layer < 2 pm thick can generally be neglected

Sample-window bond:
• correct measured up(t) by adjusting t using epoxy CL(P)

Electrode-sample bond:
• include in simulation of input u*(t)

Drive elertrnde-window hone: HSGO5 19 pm, HSGO6 43 pm (!)
• Determine Pdrive( it) by optimization using simulations
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11-1SGO2 6-pm sample-window bond

time correction using cL(P) of epoxy EOS
HSGO2 measured Sample-LiF velocity
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Preliminary results of two Thor shots suggest densification begins
10 above longitudinal stress of 10 GPa, not complete by 18 GPa
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Petitgirard (P) - p by X-ray absorption

+ Clark (P) - p by X-ray tomography

Clark (o-x)

Sanchez-Valle (P) p by integration

Thor HSG02 (o-x) A enstatite glass
Thor HSGO3 (ax) A 61/39% Si02/Mg0

A
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Columbia River

basalt

:

•
.4, pure MgsiO3

HSG05-06 reach > 25 GPa
• try correcting for bonds
• improve assembly procedure

Densification violates assumptions needed to
obtain density from elastic integration of
longitudinal Et transverse acoustic velocities
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11 Plenty more work to do

• Include VISAR data, quantify experimental uncertainties

• Correct for thick glue bonds at drive-measurement window

• Analyze all six Thor shots, including HSG05, HSGO6 to higher peak stress I

• Further experiments at Thor on pure Si02 glass at 0.5 ppm and 1000 ppm H20

• These materials will be used on Z machine in two weeks for shock-melt-then-ramp experiments

• Further experiments at Thor on "wet" (-15,000 ppm H20) Mg-Si02 and Na-Si02 glasses when available

Measurements of compressibility in glasses (hydrous and anhydrous) will complement measurements in melts 

elastic properties under quasi-isentropic (ramped) compression needed to interpret MTZ-related seismic data
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