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ABSTRACT

We describe new machine-learning-based methods to defeature CAD models for tetrahedral meshing. Using machine
learning predictions of mesh quality for geometric features of a CAD model prior to meshing we can identify potential
problem areas and improve meshing outcomes by presenting a prioritized list of suggested geometric operations to
users. Our machine learning models are trained using a combination of geometric and topological features from the
CAD model and local quality metrics for ground truth. We demonstrate a proof-of-concept implementation of the
resulting workflow using Sandia’s Cubit Geometry and Meshing Toolkit.
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1. INTRODUCTION

An engineering analyst typically receives CAD mod-
els and assemblies that are developed based on man-
ufacturing specifications which are not directly useful
for analysis. For example, a CAD model may con-
tain many small artifacts or irrelevant details that will
have little effect on the outcome of a physics simula-
tion, but dramatically slow the simulation by produc-
ing needlessly-complex meshes. Some automatic sur-
face meshing techniques [1, 2, 3] incorporate tolerant
approaches that can ignore small geometric features
and artifacts in the final mesh. However, without care-
ful user validation, fully automatic meshing methods
run the risk of eliminating geometry that is required
for simulation.

At the opposite end of the spectrum, fully manual
defeaturing of a CAD model prior to meshing re-
quires thorough inspection using advanced 3D CAD-
based software tools such as [4, 5], after which the
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analyst will devise a strategy for model preparation
that is likely to include a large number of complex,
time-consuming geometric modifications. The defea-
turing processs normally requires an expert user who
can identify problematic geometry and select the ap-
propriate tool(s) to make local adjustments to the
CAD model. These adjustments must be informed by
sound engineering judgement based on knowledge of
the physics to be simulated, along with an understand-
ing of the mesh generation procedure and expected
mesh quality outcomes.

Thus, we seek to significantly reduce the time and ef-
fort required for efficiently defeaturing CAD models
while maintaining the ability of users to validate re-
sults and intervene in the process. Our goal is a sys-
tem that permits users to graphically inspect a CAD
model, efficiently guiding them to make modifications
prior to automatic meshing that ensure quality mesh-
ing outcomes. Beginning with a solid design model
composed of geometric entities (vertices, curves, and
surfaces), the system should predict which entities will
lead to the worst local mesh quality, presenting them
to the user in prioritized order. For each entity, a
set of suggested solutions should be presented, sorted
based on their (predicted) ability to improve the lo-



cal mesh quality outcomes. The user would then have
the opportunity to preview, adjust, and perform the
suggested operation(s) if desired.

For this work, we are using machine learning to extend
the framework described in [6], prioritizing suggested
operations using predicted meshing outcomes to more
effectively and efficiently guide the user.

2. PRIOR WORK

While machine learning is widely used in text, image,
audio, and video analysis, there has been little research
on the application of machine learning to model prepa-
ration for simulation. One notable work in this area is
[7], which describes a limited environment for defea-
turing CAD models where machine learning is driven
by heuristic rule-based outcomes. While proposing
several new criteria for evaluating defeauturing results
from trained models, they rely on human interaction
to judge the quality of results, making scalability prob-
lematic. In contrast, we use mesh quality metrics from
an automatically generated FEA mesh as the training
objective for defeaturing. This allows for automatic
generation of training data, relying only on an embed-
ded geometry and meshing environment. Other recent
work has also demonstrated machine learning methods
useful for shape recognition and classification of CAD
models [8, 9, 10]. While related, these methods stop
short of driving modifications to the CAD model such
as those required for mesh generation and simulation.

3. OVERVIEW

Supervised machine learning is typically character-
ized as a problem where, given a training dataset
{(x%1,¥1), -+, (Xn,¥n)} with vector input features x
and vector output features y (typically referred to as
labels or ground-truth), it is assumed that there exists
an unknown function y = f(x) that maps input fea-
tures to output features. Using a learning algorithm,
a model can be trained (or fit) to the data, so that
the model approximates f. Once a model has been
trained, it can be used to evaluate new, previously-
unseen input vectors to estimate (or predict) the cor-
responding output vectors. To apply supervised ma-
chine learning in a new problem area, the researcher
must determine what the domain-specific outputs will
be, identify the available domain-specific input fea-
tures that can be used to predict them, and create
a training dataset containing enough examples of each
to adequately represent their distributions.

For this work, our first decision was to limit our scope
to the defeaturing of individual parts. While oper-
ations correcting the interactions between parts to
avoid gaps, overlaps and misalignments are of vital
importance, we chose to save them for future work.

Next, we needed to define our machine learning model
outputs. Since our goal, outlined in the introduction,
was to rank geometric entities and solutions by their
predicted local meshing outcomes, it followed that the
outputs of our models y would be those outcomes,
represented using mesh quality metrics. Similarly, the
input features x for each model would be chosen to
characterize the local CAD model geometry and topol-
ogy that we presumed would drive those outcomes.

Given machine learning models that could predict
mesh quality outcomes for a geometric entity or local
region of a CAD model, we could use those predicted
outcomes to present users with a sorted list of problem
areas. Then, for a given problem area, we could use
solution-specific machine learning models to present a
sorted list of suggested solutions. A key insight dur-
ing the design phase was the recognition that the set
of local CAD model features that might influence the
outcome for a given solution were themselves solution-
specific. For example, at least two different operations
could be selected to resolve a sliver surface. The first
may involve a composite operation which combines
two adjacent surfaces (see Table 1(3)), while a sec-
ond solution would involve removing the surface and
extending adjacent surfaces (see Table 1(1)). The fea-
tures required to uniquely characterize these two dis-
tinct solutions require different feature vectors. Be-
cause the size and definition of the input feature vec-
tors x must be consistent for a given machine learning
model, we necessarily trained multiple models, one per
solution type.

At evaluation time, we would then use our machine-
learning models as follows:

e Predict the mesh quality outcomes for entities in
a CAD model.

e Present the user with the list of entities, sorted
from worst-to-best quality.

e For each entity in the list:

— Given a list of candidate operations for the
entity:

— Choose the appropriate model and predict
the mesh quality outcome for each opera-
tion.

— Present the user with the list of operations,
sorted from best-to-worst outcome.

Thus, the user is presented with a prioritized list of
items to fix and operations to fix them. Inexperi-
enced users can quickly defeature their model using
a “greedy” approach by repeatedly choosing the first
suggestion for every problem area, while users with



greater experience are free to follow or ignore the sug-
gested operations. We note that, while this greedy
approach to defeaturing may not be optimal, it can
provide inexperienced users with a principled, data-
driven starting point for their work. We discuss alter-
natives to the greedy approach in Section 77.

4. FEATURES

To predict meshing outcomes with respect to local ge-
ometric entities requires characterization of the ge-
ometry and topology in the local neighborhood of
each entity within a CAD model. For each entity
Gr(R = 0,1, 2) representing vertices, curves and sur-
faces respectively, a characteristic feature vector x&#
was identified. In addition, local modification op-
erations O,(Gr) that operate on Gr, were chosen.
Since individual operations could involve modification
of multiple nearby entities, a unique feature vector
x97(GR) for cach operation was also identified. While
there are many possible choices for CAD operations,
for purposes of this study we selected 9 common oper-
ations available in the Cubit Meshing and Geometry
Toolkit [11, 6] which are illustrated in Table 1.

Each of the 9 operations On(Gr) in Table 1 repre-
sent a separate machine learning model with a distinct
set of associated input features. In addition, three
more models were created to characterize the unmod-
ified entities Gr, making a total of 12 models used
for this study. In this work we identify new topology
and geometry-based approaches to computing mesh-
ing outcomes.

Figure 1: Small curve identified in CAD model

4.1 Topological Features

Topological features characterize Gr and O,(Grg)
based upon a fixed-length set of numerical values de-
scribing an entity and its topological relationship to its
neighbors. For example, Figure 2 illustrates topolog-

Geometry Example Example ending
operation name beginning state state

(1) remove
surface

(2) tweak replace
surface

(3) composite
surfaces

(4) collapse curve

(5) virtual
collapse curve

(7) tweak remove
topology surface

(6) tweak remove
topology curve

(8) blunt
tangency

(9) remove cone

Table 1: Geometry modification operations O, (Gr).
Example beginning and ending states of each operation
are illustrated.



Figure 2: Sample topological features used for training
data at a small curve

ical features for a given small curve from the CAD
model shown in Figure 1. Table 2 describes the
attributes used for topological features for vertices,
curves and surfaces. Attributes in Table 2 are queried
from a geometry engine for each entity Gr and used
to construct x“%. In addition, depending on the oper-
ation, attributes for neighboring entities are also eval-
uated and appended to x%. The number of features
used for each model is based upon the geometric enti-
ties involved in the operation. For instance, the com-
posite operation Os(G2) includes attributes describ-
ing the two surfaces (G2 involved in the operation, as
well as attributes from the neighboring curves and
surfacess. In contrast, the collapse curve operation
04(G1) includes features describing the curve to be
collapsed, G1 and its adjacent surfaces.

Since each machine learning model requires a con-
stant size input feature vector x and local topology
arrangements may include any number of adjacencies,
we truncate or extend the size of x to ensure a con-
stant size. For example, the feature vector x2 for a
surface includes attributes from surface G as well as
attributes from up to 4 adjacent curves and surfaces,
where the adjacent surfaces are chosen from the two
shortest and two longest surrounding curves. For sur-
faces with less than 4 curves, zeros are used to fill the

remaining indices in x%2,

4.2 Geometric Features

We introduce surflets and curvelets as complementary
approaches for computing feature vector, x°% and
xOn(Gr), Figures 3 and 4 illustrate surflet pairs devel-
oped by Wahl et. al.[12]. A surflet S = (o, 8,7,9) is a
function of distance ¢ and angles, «, 3,7 between two
points with oriented normals on a surface as illustrated
in Figure 5. Surflet pairs can be computed for any
unique pair of points on the surface of a geometry. To

vertex

curve

surface

largest angle
between attached
curves

smallest angle
between attached
curves

tangency type

number attached
curves

is convex

arc length

distance between
end points

distance from
mid-point to
segment

tangent angle at
start

tangent angle at
end

exterior angle on
volume

angle on surface 0
at start

angle on surface 0
at end

angle on surface 1
at start

angle on surface 1
at end

surface type (pla-
nar, cylindrical,
parametric)

number of loops

number of curves

area
perimeter

longest
curve/perimeter
ratio

shortest
curve/perimeter
ratio

hydraulic radius

u principal curva-
ture at mid-point

v principal curva-
ture at mid-point

Table 2: Topological features computed for individual

geometric entities

convert an arbitrary number of surflets into a constant
size vector x9% | a four-dimensional array with dimen-
sions defined by «, 8, and § is constructed. The val-
ues «, 3, and 4 for each surflet are computed and as-
signed to a discrete bucket [I(«),I(8),I(v),I(d)]. For
our application we choose five intervals in each dimen-
sion resulting in a total of 625 unique buckets. Our
feature vector, x¢ is therefore a vector of 625 integers
that record the number of surflet pairs classified within
each bucket [I(a), I(8),I(v),1(d)].

Figure 3: Example model showing points and normals
used for computing surflets

Our implementation of surflet-based features requires



Figure 4: Close-up of a point and normal used for surflet
calculation

Figure 5: Surflet S is a function of the distance, § and
angles «, 3,7 between two point / normal pairs on a
surface

first triangulating the surfaces of the CAD model to
obtain a discretization. We limit the number of points
that influence x®% and x°(¢R) to those falling within
a bounding box surrounding entity Gr or O,(GRr).
For computational efficiency, we also limit the number
of points contributing to x®# and x97(GR) {6 1000
when local triangulation is dense, instead using a ran-
dom sampling of points within the bounding box.

We note that surflet pairs can be computed from
any point on the surface of the geometry near G or
O, (Gr). While providing an accurate representation
of the nearby geometry, it tends to neglect any influ-
ence from the local topological arrangement of curves
and surfaces. Since our objective in defeaturing is to
identify changes to local topology through operations
0.(GRr), we have proposed curvelets as an alternate
method for constructing x%% and x97(GR) In con-
trast to surflets, curvelets limit selection of points to
those on the geometric curves that are topologically
adjacent to Gr or O,(GRr). Instead of limiting se-
lection to a bounding box, we include points on all
adjacent curves at Gg or O, (Gr). In addition, rather
than using the normal vector at a point, curvelets use
the tangent vector on its associated curve. Surflets
and curvelets can be used in combination or indepen-
dently. We examine the characteristics and accuracy
of surflets and curvelets and their combined effect in
section 7.

5. GROUND TRUTH

Each machine learning model defined by entity Gr
and operation O,(Gr) must provide a mechanism for

evaluating ground truth. This can be done by generat-
ing a tetrahedral mesh and evaluating the local mesh
quality.

Automatic mesh generation methods often provide a
variety of built-in algorithms for automatically im-
proving or mitigating dirty geometry which we wish
to take advantage of. For this study, we use the tools
described in [1, 13] for training. Depending upon
the selected meshing tool, resulting mesh quality may
vary significantly based upon local topology, geometry
modifications and meshing parameters selected. As a
result, the proposed method for defining ground truth
has the effect of training to a specific meshing tool
and will not likely transfer to an another tool with-
out re-training. We note however that the proposed
methods are general and can be applied to training
geometry modification operations for any automatic
meshing tool.

5.1 Mesh Quality Metrics

While any mesh quality metric [14] could be used to
evaluate a mesh, we select three specific metrics based
upon their representative characteristics. These in-
clude scaled Jacobian, in-radius and deviation.

Scaled Jacobian: The scaled Jacobian, M; is de-
fined as the minimum Jacobian at any of the four ver-
tices of a tetrahedron divided by the lengths of its
three adjacent edges. M,; = 1 represents a perfectly
shaped equilateral tetrahedra, while M,; < 0 defines
an inverted element. We utilize M,; as a ground truth
as it is independent of mesh size and is representa-
tive of the Jacobian mapping function used in finite
element methods.

In-Radius: The in-radius, M;, is defined as the ra-
dius of an inscribed sphere within a tetrahedra. Since
this value is an absolute distance, we utilize a scaled
in-radius value Ms;.. Ms;, is defined as M, /M;.(St),
where M;-(St) is the in-radius of an equilateral tetra-
hedra with edge length equal to target mesh size St.
A value of Ms;» = 1 represents a perfectly sized ele-
ment, while My, < 1 is smaller than St and Mg, > 1
is larger than S7. For training purposes we generate
data at multiple different target mesh sizes. We in-
clude M,;, as a ground truth to learn characteristics
that will avoid small elements that may result in long
run-times for explicit FEA codes.

Deviation: The deviation, My, metric is defined as
the distance from the centroid of a surface triangle to
its closest point on the geometry. Unlike M,; and M,
that describe characteristics of a tetrahedra, M, is a
triangle metric that measures how closely the bound-
ary of the mesh conforms to the prescribed geometry.
For this metric we also compute a scaled deviation
Msq = Msq/St. A value of M,q = 0 represents a tri-



angle that perfectly matches the geometry. Values of
Msq > 0 will be necessary for any geometry with cur-
vature, however minimizing M, is beneficial to ensure
the mesh adequately represents the input geometry.
In this case, the maximum value for My, defines the
worst, quality.

Success/Failure: We note that candidate opera-
tions are identified for each small entity in a CAD
model from a generic set of options. As a result, the
particular local arrangement of curves and surfaces
for a selected operation may not be valid. In most
cases, the success or failure of an operation can only
be determined by actually performing the operation
and recording the result. Whether the CAD opera-
tion, O, (GR) is successful and its subsequent mesh-
ing is successful, is also recorded and used as a label
Myccess- This information is useful for identifying
and eliminating solutions that would not be effective
for defeaturing.

5.2 Locality of Mesh Metrics

Assuming the mesh generation is successful following
a CAD model modification, nearby tetrahedra and tri-
angles at Gr can be evaluated and a controlling mini-
mum M, M and maximum M4 returned as a rep-
resentative ground truth for operation O,(Gr). For
this study we identify two different methods for pre-
scribing the locality of the mesh to Gr including a
bounding box and a local topology method.

Bounding Box: We identify a set of tetrahedra,
Tp falling within a Cartesian aligned bounding box
B(GRr) surrounding entity Gr. The extent of B(Gg)
is computed by adding the target mesh size, St to all
sides of a tight bounding box surrounding Gr. For
operations O, (Gr), the set Tp includes a bounding
box surrounding all entities involved in the operation.
Figure 6 illustrates the set of tetrahedra, Tp falling
within B(G1) defined by a small curve, G1. Only those
tetrahedra in Tp falling within B(GRr) are considered
when computing the controlling metrics for Ms;, M,
and Mgq.

To compute T for an operation O, (Gr), the entities
involved in the operation are identified prior to per-
forming the operation and their combined bounding
box computed. Once O, (GRr) is performed and a mesh
generated, the controlling metrics can be computed.
While simple to implement, depending on the arrange-
ment of topology, T may encroach on other nearby
entities where the controlling metric may conflict. We
also note that the bounding box method is sensitive
to orientation of the CAD model, as B(Gr) will be
aligned with the global coordinate axis. To overcome
these issues, we also introduce a method based upon
the local topology at Gr.

Figure 6: Example set of tetrahedra Tp defined by
bounding box B(G1) surrounding small curve G1

Local Topology: We can identify the set of tetra-
hedra, T that share at least one mesh node on Ggr
as well as those tetrahedra immediately attached to
those at Gr. The local topology method for comput-
ing the controlling metrics is based only upon those
tetrahedra in Tr. Figure 7 illustrates the local set of
tetrahedra Tr associated with a small curve. Since
Tr includes only those tetrahedra in contact with Gr
and those immediately adjacent, it is less likely that
Tr will encroach on neighboring entities. It also has
the advantage of being insensitive to geometry orien-
tation.

‘We note that T'r is convenient to compute for G g prior
to performing geometry operations as we can easily
query for the set of nodes associated with Gr. How-
ever following operation O,(Gr), entity Gr may no
longer exist. For example, following the remove sur-
face operation illustrated in table 1, the surface G2 no
longer exists, but is instead replaced by a curve de-
fined by the intersection of two extended surfaces. As
a consequence, it is necessary to identify one or more
surviving entities for each operation O, (Gr) on which
the set of tetrahedra T7 can be discerned. For the re-
move surface example, the surviving entity would be
a single curve. T in this case would be defined by
the set of nodes associated with the surviving curve.
A similar set of surviving entities is also identified for
each operation O, (Gr).

6. MACHINE LEARNING MODELS

To generate training data for our study, we used a
small sampling of 94 single-part CAD parts obtained
from the open internet resource GrabCAD [15]. Figure
8 illustrates a few of these CAD parts used for train-
ing in this study. For each part, we generated train-
ing data for the twelve geometric operations described
above, including 3 mo_op models. This involved iden-



Figure 7: Example set of tetrahedra T'r defined by nodes
associated with small curve G

tifying small entities, where small was a function of a
range of four target mesh sizes. We also identified bad
vertices based on tangent or sharp angle conditions
at the vertex. Relevant CAD operations selected for
each small entity or bad vertex were identified from
a pre-defined set of operations for each entity type.
Some culling of relevant operations was initially ac-
complished to reduce the number of operations that
needed to be trained. For example, the remove_cone
operation was trained only for entities where the un-
derlying CAD kernel identified it as a conic surface
type. Similary blunt_tangency was only selected for
vertices with adjacent curves forming an angle less
than 10 degrees. For this reason, numbers of obser-
vations varied widely for each operation type. Table 3
shows the number of observations extracted from the
CAD parts used for this study for each of the 12 op-
erations trained.

Method for generating training data: To build
training data, the following procedure was enlisted:

1. Import CAD part

2. Compute a range of four target auto-sizes St
based on characteristics of the part. Do steps
3 to 10 for each St

3. Identify a list of the small entities and sharp ver-
tices, Gr based on St. Do steps 4 to 10 for each
Gr.

4. Identify a list of relevant operations O, (Gr) for
entity Gr. Do steps 5 to 10 for each O, (Gr)

5. Compute a fixed-length vector of features
x©n(GR) for operation O, (Gr). This may include
topology-based features, geometry-based features
or a combination of both.

6. Perform CAD operation O, (Gr)

7. Mesh the part with size = Sr

8. Record success or failure of the geometry opera-
tion and meshing as label Msyccess

9. If geometry and meshing are successful, compute
metrics, Msj, Mg and Msq based on locality
(Tr and/or Tp)

10. Write one row to a .csv file containing features
x97(GR) and labels Msuccessy Msj, Msir, Msa

We note that in some cases there were failures in this
process, either because an operation failed, or meshing
failed. This is indicated as step 8 of the above proce-
dure. When the operation failed, it was typically be-
cause the geometric kernel couldn’t resolve the topol-
ogy for the input. Failures in the subsequent meshing
step happened when an operation succeeded, but its
modifications affected the local topology so badly that
the mesher was unable to proceed. In either case, we
kept track of a seventh categorical ground truth metric
Msyccess capturing whether the combination of oper-
ation and meshing succeeded or failed. Table 3 also
indicates the number of geometry or meshing failures
based on the operation for this study. Only opera-
tions that complete successfully record a value for la-
bels Msj, Ms;r and Msq. Otherwise they are set to
Z€ro.

Num Num |Num

Obs. Failed |Trained
vertex_no_op 1348 0 1348
curve_no_op 9842 0 9892
surface_no_op 5842 0 5842
remove_surface 17,624 | 10,026 7598
tweak _replace_surface 2569 1152 1417
composite_surfaces 43,551 5020| 38,531
collapse_curve 13,830 2113| 11,717
virtual_collapse_curve 14,955| 14,743 212
remove_topology_curve 7056 5175 1881
remove_topology_surface 3890 3102 788
blunt_tangency 8059| 3982 4077
remove_cone 232 20 212
Totals 128,484(45,333| 83,515

Table 3: Numbers of observations extracted from the 94
CAD parts used in this study.

We used Python [16] and the scikit-learn library [17]
to train twelve machine learning models, one for each
geometric operation. Each model’s output prediction
included all six of our ground truth metrics. We also
trained a per-operation model to predict whether an



Figure 8: A few examples from the 94 CAD models used for training in this study.

operation was likely to succeed or fail. Thus, we cre-
ated a total of 24 models.

Because we couldn’t be certain which (if any) of the
features in our training data would be useful, we
choose to use ensemble of decision trees (EDT) mod-
els [18]. An EDT is a collection of individual decision
trees, each of which is trained on a subset of the full
training data using a technique called bagging [19]. At
evaluation time, the EDT’s prediction is a weighted
sum of the predictions of each of its individual trees.
Colloquially, EDTs capture the “wisdom of crowds” by
allowing each tree to “vote” on the final result. EDTs
make popular general purpose machine learning mod-
els, due to their easy interpretability (each tree con-
tains a set of branching boolean tests that are applied
to the input features, with output predictions stored
in the leaf nodes), their robustness in the face of dis-
tracting or misleading input features, and their ability
to compute feature importance matrics that capture
how often a given feature is useful when arriving at a
decision (see figure 23).

Finally, we had to choose appropriate hyperparameters
to control the training and structure of the models
themselves. For our EDT models, this meant choos-
ing how many trees to include in each model, and how
deep to allow the trees to grow. Larger values for these

parameters produce more accurate models, at the ex-
pense of longer training times, slower model evalua-
tion, and increased model size. To select these param-
eters, we used a preliminary round of experiments to
identify values that were as small as possible without
negatively impacting the models’ performance, shown
in Figure 9 and Figure 10. Based on these results,
we chose to use EDT models that contained 75 trees
with a maximum tree depth of 25 for our remaining
experiments.

7. RESULTS

All of the following results were computed using 5 x 2
cross validation, which involves randomly partitioning
the training data into two sets; training a model on
the first set and testing it on the second; training a
model with the second set and testing it on the first;
performing the preceding process five times for a total
of ten models. The cross validation results are the av-
eraged results of the individual models. This ensures
that the results are conservative estimates of model
performance, reducing the likelihood that an unfortu-
nate random partitioning of the training data could
produce unrealistically high (or low) performance.
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Figure 9: Performance of an EDT model versus the num-
ber of trees, for our six metrics.

15000

0.10

10000

topo_min_sj
topo_min_ir
topo_max_dev
bbox_min_sj
bbox_min_ir
bbox_max_dev

0.05
Y NNAA

Mean absolute error
Average number of tree nodes

5000

Max depth

Figure 10: Performance of an EDT model versus tree
depth, for our six metrics. The additional dashed line
shows the average number of nodes in each tree, a useful
proxy for the size and complexity of the model.

7.1 CAD Operation Failure Prediction

First, we evaluated the performance of our failure pre-
diction models. From Figure 11, we see that there
were many failures encountered during training data
generation, and that some operations failed more of-
ten than they succeeded for the local arrangement of
curves and surfaces. This suggests that failure predic-
tion models should play a significant role in avoiding
problems for the end user.

Because the failure prediction models produce a single
categorical “succeed” or “fail” output, we evaluated
their performance using precision and recall metrics.
In this case precision is the percentage of predicted

100%

Success rate
50%

0%

R K S P

> @ @ ¢ 2 @
R R &P s
P T & & & ¢ S

£ & N

Figure 11: Percentage of meshing operations that suc-
ceeded, by type, sorted by success rate. The first three
operations always succeed because they are do-nothing
placeholders.

failures that actually failed, and recall is the percent-
age of actual failures that were predicted to be failures.
An ideal model should balance high recall (avoiding
false negatives) with high precision (avoiding false pos-
itives).

Figures 12 and 13 show the precision and recall scores
respectively for failure prediction models trained us-
ing our four sets of features: topological, surflet,
curvelet, and a combination of all three. The results
are grouped by operation, and the groups are sorted
using the scores for models trained using only topo-
logical features. In all cases, larger values are better.

Figure 13 shows that all of our models achieve excel-
lent (nearly 100%) recall, aggressively identifying all of
the actual failures in the training data. However, Fig-
ure 12 paints a more complex picture, with the models
achieving a wide range of precision scores. The mod-
els with low precision scores are arguably too aggres-
sive, since a low precision in this case means that the
model is predicting failures for operations that actu-
ally succeeded. Models with a precision lower than 0.5
(marked with the dashed line in Figure 12) are wrong
more often than right, and would not be useful in prac-
tice. It is interesting to note that the performance of
the models in Figure 12 correlates closely with the
failure rate in Figure 11, suggesting that unskewing
the data may improve performance. Regardless, it is
clear from the figures that the models trained using
topological features have considerably higher perfor-
mance than those trained with the other features in
every case except one (remove_surface precision), even
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Figure 13: Failure prediction model recall. Larger values are better.

models trained with a combination of all three feature
types.

7.2 Mesh Quality Prediction

Our metric prediction models were also evaluated us-
ing the topological, surflet, curvelet, and combined
features. Recall that each metric prediction model
predicted the scaled Jacobian Ms;, scaled in-radius
M, and scaled deviation metrics M4, computed us-
ing bounding-box T g and local topology based regions
Tr, for a total of six outputs. Because the metrics

are continuous, the model results are reported using
mean absolute error (MAE), the average of the abso-
lute differences between the predicted and actual post-
meshing metric values. Note that, in contrast to the
failure prediction results, smaller MAE values are bet-
ter.

Since the topological features performed so strongly
in our failure prediction models, we began by looking
for similar patterns with our metric prediction models.
As seen in Figure 14, topological features once again
perform significantly better than the other input fea-
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Figure 15: Comparing bounding-box and local topology scaled Jacobian metrics. Smaller values are better.

ture choices. Note that for these results, since we are
illustrating general trends when comparing methods
for computing features, the MAE was averaged across
all six metrics for each operation. Results for each of
the three different metric types Msj, Mg and Mg
are illustrated separately in figures 15, 16 and 17 re-
spectively.

For the CAD operations we trained, we observed that
topological features performed better than geometric
features (surflets and curvelets) in all cases. Indeed,
we found that combining both topological and geomet-

ric features together resulted in poorer performance
than using topological features alone. From these re-
sults we can assert that geometric or shape characteris-
tics alone are not sufficient to acurately distinguish the
effects of CAD operations on a mesh. Instead, results
illustrate that topological characteristics are needed in
order to more precisely predict meshing outcomes.

It is worth noting however, that although geomet-
ric operations performed worse, that in most cases,
curvelet features tended to perform slightly better
than surflets alone. This is notable since the curvelet
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Figure 17: Comparing bounding-box and local topology deviation metrics. Smaller values are better.

features limit the geometric information only to the
nearby curves, without providing quantities on sur-
faces. From these results, it may be reasonable to
conclude that the topological information offered by
limiting quantities to curves only, may have improved
performance, in a similar manner that topological fea-
tures improved performance.

Since topological features proved more accurate in
characterizing our CAD operations, we limit demon-
stration of performance of each of our three target met-
rics in figures 15 to 17 to topological features. In these

figures, we compare the performance of the two local-
ity choices, bounding box T and topology Tr. We
observe that for both scaled Jacobian (figure 15 and
scaled in-radius (figure 15) that most operations had
an MAE in the range of 0.05 or less. That means that
predictions of Ms; and Mg, from the proposed ma-
chine learning models can be expected to be less than
approximately 0.05 on average. For Mg (figure 17 the
MAE was less than 0.01 for most cases.

When comparing Tp and Tr the results here were
much more nuanced, with bounding-box locality pro-



viding a small-but-consistent performance boost for
the scaled Jacobian metric, roughly identical perfor-
mance for the in-radius metric, and consistently lower
performance for the deviation metric. Based on the
ambiguity of these results, we would likely choose to
use local topology based regions in production, since
they select significantly fewer tetrahedra, tend not to
encroach on adjacent geometric features, and are ori-
entation invariant, as described in Section 5.2.

We also note that for all operations trained, we com-
puted performance only for those operations predicted
to succeed as indicated by our failure models (see fig-
ure 11). This tended to limit our sample size for some
of the operations such as virtual_collapse_curve and re-
move_topology_surface. This may account for reduced
accuracy in some of our predictions as illustrated by
the outlier virtual_collapse_curve performance in figure
15.

8. APPLICATION

Each model was serialized to disk for use at runtime for
interactive or automatic defeaturing. To demonstrate
the proposed ML-based defeaturing environment both
an interactive graphical tool and automatic greedy-
based algorithm were been implemented.

8.1 Interactive GUI

A graphical user interface panel was implemented in
the Cubit geometry and meshing toolkit [11, 6]. Used
in conjunction with a graphical display of the CAD
model, Figure 18 illustrates a proposed panel that
was employed to manage and drive defeaturing. In
this environment, a list of entities Gr shown in fig-
ure 18(h) predicted to cause poor quality are listed
ordered from worst to best based upon the selected
metric 18(e). Only those entities with predicted qual-
ity below a user-defined threshold shown in 18(g) are
displayed.

Selecting entity Gr will reveal a list of possible so-
lutions O, (Gr) shown in 18(i) prioritized based on
predicted mesh quality. Predicted quality outcomes
are shown in parenthesis next to each operation. The
user can preview the operation and choose to accept it,
modify the solution or choose to ignore it all-together.

A simple illustration of how this GUI might be used
is shown in figure 19 and table 4. In this example, a
tangency condition at vertex 143 is predicted to result
in nearby tetrahedra with a minimum Mj; of approx-
imately 0.0725. To improve the quality, the operation
composite create surface 77 42 is suggested which
is predicted to result in M; of approximately 0.1435.
In this example, the the machine learning models pre-
dict that combining or compositing the two adjacent

Volume List all - (a)
Small Curve Length 0.1 P — (b)
Auto Update Detect Small Features +T—— (C)
(d) — % Use Machine Learning
ML Metric Objective In-Radius Ratio B (e)
(f) ——> Execute ML Soluticns 0.2 T (g)

Consider correcting small features listed below.
Select a small feature to view the possible
solutions.

Small Features

Entity ID Entity Data
(h) ¥ Worst Entities (12) In-Radius
e
» Curve 129 0.1306
» Curve 131 0.1331
» Curve 78 0.1331
» Surface 24 0.2288
» Surface 21 0.2289
Vertex 59 0.2297
Vertex 62 0.2306
Solutions

" Possible Solutions

(i) ———{ Rebuild Topology [IR: 0.182315]
Collapse to Vertex 12 [IR: 0.115744]
Collapse to Vertex 75 [IR: 0.105005]
Remove Surface 38 [IR: 0.06737]
Remove Surface 41 [IR: 0.0653509]
Collapse (all virtual) to Vertex

75 [IR: 0.0121588]

Collapse (all virtual) to Vertex

12 [IR: 0.0106142]

Figure 18: A proposed graphical interface for driving
ML-based defeaturing. (a) List of volumes to be defea-
tured. (b) User defined size considered small. (c) Button
to detect and populate panel with small features. (d)
Option to use ML. Loads ML models. (e) User selects
target metric for criteria (minimum M,;, Ms;r or maxi-
mum M,g) (f) Button to execute automatic defeaturing
using Greedy criteria. (g) Limit for display of predicted
worst quality. (eg. entities with predicted Mj; less than
0.2 are listed) (h) Ordered list of entities showing pre-
dicted mesh quality. (i) Ordered list of CAD operations
to correct the selected entity in (h), prioritized by pre-
dicted quality.

Vertex 143

Surface 42

Figure 19: Defeaturing example where tangency con-
dition exists at vertex 143. Machine learning models
predict that a composite operation between neighbor-
ing surfaces 42 and 77 will improve mesh quality at this
vertex.



. Num |Global |Num tets|Predicted|Actual|Predicted|Actual
Operation i
tets |min M,;|Ms; < 0.2 |no-op no-op |op op
Initial 269957| 0.1025 5
composite create surface 77 42|268528| 0.1511 3 0.0725 0.1025 0.1435 0.1935

Table 4: Example of the effect on scaled Jacobian M,; from a single Cubit operation performed on CAD model shown in
figure 19 and 20. Comparison to actual mesh quality is also shown.

(b)

Figure 20: Tetrahedral meshes based on geometry in
figure 19 (a) Mesh at vertex 143 before suggested de-
featuring operation. (b) following defeaturing operation.
Mesh quality for this example is illustrated in table 4.

surfaces 77 and 42 will improve the local mesh qual-
ity. The user can choose to accept this suggestion, or
choose an alternative. To evaluate the accuracy for
this one example, figure 20 shows a mesh generated
before and after performing the composite operation.
The local mesh quality at vertex 143, illustrated in fig-
ure 20(a) results in M,; of about 0.1025, an error of
about 0.03. Similarly we show the mesh following the
operation in figure 20(b) where the local mesh quality
resulted in M,; of 0.1935, an error of about 0.05.

8.2 Greedy-based Algorithm

The user also has the option to accept the best pre-
dicted solutions without having to manually execute
each one individually. The button shown at 18(f) is
intended to run a Greedy-based algorithm described
here. When selected, the predicted worst quality en-
tities G r are successively modified using the best pre-
dicted operations O, (Gr). This continues until all
entities have a predicted quality exceeding the user
specified threshold at 18(g).

We illustrate a simple Greedy-based procedure in table
5 and figures 21 and 22. In this example, seven opera-
tions are automatically selected based upon minimum
scaled in-radius Ms;, predictions. In this case, table
5 shows the number of small elements falling below

(c)

Figure 21: lllustration of initial 4 composite operations
from table 5 generated from Greedy-based method. Op-
erations were automatically identified based on predic-
tions of minimum scaled in-radius M. (a) 4 holes with
conical shafts are automatically identified. (b) Mesh pro-
duced on surfaces of holes without applying composite
operations. Note that mesh generator automatically re-
fines to cone apex. (c) Resulting mesh after composite
operations applied.

a user defined threshold of M, = 0.2 reduced from
over 10,000 to 1 and the minimum My, increased from
0.0078 to 0.1628. The Cubit operations composite and
tweak remove topology are used to defeature the model
as illustrated in figures 21 and 22.

‘We note that the proposed machine learning models
automatically identify the conical surfaces illustrated
in figure 21(a) as those that will produce an unfa-
vorable Mg;, metric. In this case, the surface mesh
generator used for this study [1] will characteristically
identify and refine to the apex of the conical sur-
faces. Training has identified this characteristic and
our models correctly predict the mesh quality out-
come. Figure 21(b) shows a portion of the surface
mesh at the conical surfaces if the suggested compos-
ite operation had not been applied. Figure 21(c) shows
the same surfaces once the composite is applied. Note
that the proposed models correctly identified the com-
posite operation as the best method for increasing the
target mesh quality, Msi,.



(b) (c)

Figure 22: Example of tweak remove_topology curve op-
eration used in the Greedy-based procedure from table 5.
(a) (Top) Curve 218 is predicted to have poor quality,
M., (Bottom) tweak remove_topology curve operation
applied to curve 218. (b) Surface mesh at curve 218
without applying operation. (c) Surface mesh after ap-
plying operation.

Similarly, proposed machine learning models have pre-
dicted that the small curve 218 illustrated in figure
22(a) will produce mesh quality M, less than the
user-prescribed threshold of 0.2. The best choice for
improving this condition was predicted to be the Cubit
operation, tweak remowve_topology curve, illustrated in
figure 22(a). The surface mesh without applying this
operation is shown in figure 22(b) and the resulting
mesh, if the operation is applied, is shown in 22(c).

Although the principal purpose of the proposed ma-
chine learning models is to predict and correct the
worst quality artifacts in a CAD models without mesh-
ing, to evaluate the accuracy of our methods, table
5 compares the predicted metrics to the actual mesh
quality from meshes produced before and after the op-
eration is performed. For example, table 5 shows that
the predicted quality at curve 218 would change from
Mg = 0.1039 to 0.2935 as a result of performing the
indicated operation. We compare that with the actual
mesh quality values of 0.1070 and 0.2813 respectively.

9. CONCLUSIONS

A new application of modern machine learning tech-
nologies to prepare models for simulation has been in-

troduced. We have demonstrated the ability to ac-
curately predict mesh quality based on local topology
of a CAD part without having to generate a mesh.
We have also introduced methods for identifying CAD
operations to effectively defeature a CAD model by
predicting meshing outcomes for a range of selected
operations. A study based on a limited set of 94
open-source CAD parts was used to generate training
data for 24 separate models that predict failure and
mesh quality metrics. New methods for computing
features and labels were introduced and their accuracy
assessed.

9.1 Feature Importance

We introduced new methods for defining features for
our machine learning methods. We found that mesh
quality predictions based on topology-based features
were more accurate than geometric features that used
surflets and curvelets. Topology-based features, se-
lected for each entity type and operation included lo-
cal attributes such as arc lengths, angles, areas, curva-
tures and other characteristics. Although results indi-
cated that the selected attributes in this implementa-
tion led to reasonably accurate predictions, additional
study would be warranted to carefully choose an opti-
mal set of features.

Figure 23 illustrates the relative importance of the
topologic attributes selected as features for 8 of the
12 operations used in this study. A higher impor-
tance for a specific feature indicates its relative in-
fluence on the mesh quality predictions produced by
the machine learning models. While there is no con-
sistent pattern in feature importance, it is worth not-
ing that mesh_size tends to show up among the top
four features for all models. The target mesh size St
is included as a feature for all models. As intuition
may concur, these results indicate that mesh quality
predictions are heavily dependent upon the user pre-
scribed mesh size. Although a definitive optimal set of
features for the prescribed operations may be beyond
the scope of this study, understanding what features
are most critical can help in designing and improving
future implementations.

9.2 Label Accuracy

Labels or ground truth for this application were defined
by a set of mesh quality metrics including scaled Ja-
cobian, In-radius and deviation. These were selected
based on common requirements for analysis codes that
require well-shaped, isotropic elements of consistent
size and grading that conform well with the domain.
For other applications that may require anisotropic el-
ements or prescribed minimum elements through the
thickness, additional or alternative metrics would need



Operation Num G{obal Num tets|Predicted | Actual|Predicted | Actual
tets |min Mg, | Msir < 0.2 |no-op no-op |op op

Initial 269957 0.0078 10000+

composite create surface 18 17 263957| 0.0070 9477 0.0236 0.0086 0.4103 0.3139
composite create surface 15 14 256093| 0.0072 5917 0.0236 0.0095 0.4103 0.2982
composite create surface 12 11 249603| 0.0065 2020 0.0236 0.0080 0.4103 0.2962
composite create surface 9 8 245917| 0.1069 54 0.0241 0.0065 0.4103 0.3147
tweak remove_topology curve 218|244754| 0.1934 2 0.1039 0.1070 0.2935 0.2813
tweak remove_topology curve 176|244620| 0.1628 4 0.1237 0.1935 0.2539 0.1628
tweak remove_topology curve 178245172 0.1628 1 0.1352 0.1770 0.2381 0.1628

Table 5: Example of Cubit operations performed automatically from Greedy-based predictions of minimum scaled in-radius
Ms;r. Operations and mesh illustrated in figures 21 to 22

to be used as labels.

In this study, we also proposed two different methods
for characterizing the locality of mesh quality metrics.
The bounding box and topology-based methods were
proposed which tended to yield similar predictions.
We concluded that the use of topology-based local-
ity was preferred since it represented more closely the
local environment of the operation rather than the ori-
entation insensitive bounding box.

Further we also note that this study limits ground
truth to mesh quality metrics that can be com-
puted from an automatically generated tetrahedral
mesh. Although mesh quality is an important fac-
tor in preparing a simulation model, there are many
other factors that are not as easily characterized.
For example, known loads, boundary conditions and
other physics-based properties may influence any de-
featuring performed by the analyst/engineer. These
physically-based characteristics may also need to be
considered when identifying features and labels for fu-
ture implementation.

9.3 Software Considerations

For this study we selected a set of CAD operations for
training from the Cubit [11] geometry and meshing
tool suite. We also selected a commercial mesh gener-
ation tool, Meshgems [13] that served as the basis for
training and defining our ground truth metrics. It is
worth pointing out that the methods introduced are
not specific to our implementation environment. In-
deed, further work should be enlisted to identify an im-
proved set of operations that can take advantage of a
more comprehensive, robust and flexible CAD model-
ing environment. Additionally, alternative automatic
mesh generation tools could be enlisted to train and
identify ground truth metrics.

We also note that this study limits the number of in-
put training models to a set of open-source CAD parts

obtained from GrabCAD [15]. This was done to ensure
reproducibility and provide a baseline for subsequent
studies. When deployed in a practical defeaturing en-
vironment, a tool for selecting and building training
data based on analysts common use cases would ide-
ally be developed. Serialized data that can be queried
at run-time from a defeaturing tool would be updated
and customized as new CAD models are encountered.

9.4 Reinforcement Learning

We have implemented a supervised machine learning
approach to assist in CAD defeaturing. The pro-
posed automatic greedy-based method suggests the
best CAD alteration at each step, given the current
state of the associated mesh. It may happen, how-
ever, that this approach could become mired in a local
minimum, such that multiple coordinated actions are
required to remove a particular undesired feature.

In addition to our greedy approach, we are therefore
considering the use of Reinforcment Learning (RL).
RL is an approach which can consider multiple co-
ordinated actions, even arbitrary length sequences of
actions leading to global minimums [20, 21]. It is, how-
ever, computationally expensive and can be difficult to
generalize from one context to another.

We will describe our work using RL in a later report,
but we have so far achieved promising initial results
on a simple CAD model using Q-learning. We have
discovered global minimums using short sequences of
CAD operations. We have also enumerated statistics
showing that the defeaturing problem can be very diffi-
cult with many potential actions that can be detrimen-
tal to the overall improvement of the resulting mesh.
In the future, we plan to generalize our approach to
arbitrary CAD models that incorporate geometric fea-
tures and potentially textual descriptions of CAD op-
erations, all using a deep Q-learning framework.
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Feature Importance Feature Importance

mesh_size 1.65771 N max_angle 0 2.39602 ]
exterior_angle 0 1.23113 S mesh_size 0.864585 —
curvature2 1 0.524542 — face_angle11 0 0.698811 —
largest_angle 0.425724 — rel_mid_deviation 0 0.650515 _—
short_curve_ratio 1 0.414681 L] exterior_angle 0 0.484078 |
shortest_curve_length 0 0.381628 — shortest_curve_length 1 0.476223 L ||
long_curve_ratio 0 0.353482 —_— shortest_curve_length 0 0.269208 L]
long_curve_ratio 1 0.220527 - exterior_angle 3 0.217465 [ ]
max_angle 1 0.210075 - hydraulic_radius 1 0.152276 0
short_curve_ratio 0 0.197236 - rel_arc_length 0 0.133412 L]
(a) vertex_no_op (b) curve_no_op
Feature Importance Feature Importance
arc_length 2 2.96364 I mesh_size 2.51458 I
max_angle 3 1.07613 —— short_curve_ratio 1 0.461274 -
exterior_angle 2 0.833845 — area 0 0.439399 -
mesh_size 0.510938 - shortest_curve_length 0 0.336728 -
min_angle 3 0.472651 - shortest_curve_length 1 0.274238 [ ]
num_loops 1 0.40401 - hydraulic_radius 2 0.189091 u
long_curve_ratio 1 0.227898 [ ] short_curve_ratio 0 0.17918 (]
long_curve_ratio 0 0.211206 L] hydraulic_radius 1 0.168206 [
hydraulic_radius 0 0.186013 L] min_angle 0 0.158146 [ ]
short_curve_ratio 0 0.176082 ] perimeter 1 0.152295 (]
(c) surface_no_op (d) composite_surfaces
Feature Importance Feature Importance
long_curve_ratio 0 2.6299 I mesh_size 1.81267 S
mesh_size 0.763937 [ — arc_length 0 0.65054 ——
num_curves 0 0.728801 — shortest_curve_length 0 0.600115 —
angle 0.699596 — hydraulic_radius 0 0.37986 ]
shortest_curve_length 2 0.325328 (- hydraulic_radius 4 0.3305 |
hydraulic_radius 0 0.291079 - longest_curve_length 4 0.308023 -
arc_length 0 0.261672 - short_curve_ratio 0 0.248207 [
shortest_curve_length 1 0.244802 L] short_curve_ratio 2 0.247287 -
shortest_curve_length 0 0.240083 - short_curve_ratio 1 0.20956 -
area 2 0.231626 L] short_curve_ratio 3 0.196559 -
(e) blunt_tangency (f) remove_topology_curve
Feature Importance Feature Importance
mesh_size 4.07086 S mesh_size 1.58561 S
curvature2 0 0.978725 — long_curve_ratio 0 0.794654 —
hydraulic_radius 0 0.541933 - hydraulic_radius 1 0.581031 —
area 0 0.525383 - hydraulic_radius 2 0.496592 —)
perimeter 0 0.431603 [ ! exterior_angle 1 0.298324 |
hydraulic_radius 1 0.372828 = curvature2 0 0.238511 [
hydraulic_radius 4 0.349455 ] area 4 0.220314 -
shortest_curve_length 4 0.256454 L] hydraulic_radius 3 0.191892 -
shortest_curve_length 1 0.255247 [ ] long_curve_ratio 1 0.165949 [ ]
exterior_angle 4 0.207114 ] rel_arc_length 3 0.159437 -
(g) remove_cone (h) remove_surface

Figure 23: Feature importance: Top 10 topology-based features ranked by their importance for 8 of the 12 operations
used in this study. Feature importance was computed as a by-product of the ensemble of decision trees (EDT) method
used for generating our machine learning models.



