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Abstract—This work identifies and plots the environmental
stressors that are known to degrade photovoltiac (PV) mod-
ules. The literature search identifies models that estimate the
damage caused by a PV modules exposure to various weather,
including temperature, radiation, and humidity. The weather
related variables are identified and plotted using contour plots to
highlight the geographic distribution across the U.S. In this case,
we used the Global Land Data Assimilation System (GLDAS)
to plot ambient temperature, irradiance, and specific humidity.
The analysis also calculated the degradation model stressors
using the GLDAS data set (i.e. module temperature, plane of
array irradiance, and relative humidity) and compared these
values with the standard variables to identify correlations and
required translation to represent the stressor accurately. The
results show that global horizontal (GHI) irradiance provides
a sufficient representation, module temperature at GHI needs to
be calculated, and specific humidity is significantly different from
relative humidity.

Index Terms—photovoltaic, accelerated aging, series resistance

I. INTRODUCTION

The potential exposure of photovoltaic (PV) modules to
environmental stressors in different geographic regions is
assessed using the Global Land Data Assimilation System
(GLDAS) data set [1]. Exposure to extreme temperatures [2],
humidity [3], thermal cycling [4], ultraviolet (UV) radiation,
and others can stress and damage the bonds, packaging,
electrical components, and the solar cells of photovoltaic (PV)
modules. The GLDAS data set’s weather variables (e.g. ambi-
ent temperature, radiation, etc.) provides a qualitative review
of the spatial distribution for environmental stressors in the
U.S. Findings from this work can define regional differences,
which will lead to PV specific climate zone designations.

The PV industry lacks a well defined climate assessment
criteria, whereas other industries use climate maps to define
design criteria. For example, the structural engineering field
uses geographic climate information to define specific regional
wind and snow load parameters. Or, the road pavement indus-
try’s temperature zone map helps designers specify layer sizes
and mixes for particular regions [5]. It is unclear to what extent
the PV industry considers climate when designing modules.

PV researchers and practitioners often cite the Koppen
Geiger climate zone map [6]. However, the Koppen Geiger
system, developed by Wladimir Koppen in the early 1900s, is
based on precipitation and temperature patterns only [7]. The

approach created categories for different varieties of vegetation
and not for understanding potential long-term impacts on PV
module performance. This paper attempts to identify and map
environmental stressors that are known to degrade PV modules
and inform future development of a climate zone mapping
system.

This research paper identifies known stressor variables,
calculates and compares them with variables in the GLDAS
data set, and evaluates the spatial distribution of each stressor
variable. The literature search (Section [) provides a review of
degradation models when subjected to accelerated-aging test
chamber experiments and outdoor environments. The stressor
variables are assessed using the GLDAS data by caclulating,
comparing, and maping solar radiation, temperature, and hu-
midity (Section [II)).

II. BACKGROUND - PHOTOVOLTAIC MODULE STRESSORS

Abiotic factors, such as temperature, changes in tempera-
ture, moisture, module deformation caused by wind, and solar
radiation, impact long-term PV performance. Each region in
the U.S. experiences these factors at different levels. Past
literature considered the exposure to various factors and cre-
ated formulas to model the impacts. The overview paper [§]
documents many of the methods.

A. Solar Radiation

A direct estimate of UV exposure is difficult to measure
in the field. However, according to [9], short wave solar
irradiance can provide a basic estimate based on Equation [I}:

b
Diyw(t) = / E(u)(0.05) du. (1)

where D,,,, was the UV dose and E was the total light spectrum
solar radiation. In this case, the stressor variable is E.

B. Temperature

Exposure to high module temperature can causes the PV
module to degrade the encapsulant, which results in a reduc-
tion in electrical current output. Equation 2 provides an esti-
mate of the damage caused by module temperature exposure:

D=T,, exp<k_?“> )
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where T,, is the maximum temperature, t is the time step, the
activation energy Q, is set to 0.622, and k; is the Boltzmann
constant [10]. Another method, documented in past work,
equates the variable module temperature data to a single
value that represents the potential exposure if the module had
been subjected to a constant temperature over the same time
period [11]. This equivalent temperature is calculated using

Equation [3}
_Qa

_Qa _ 1
exp(kaeq> 5 /exp (kﬂ(t)) dt. 3)

where t is the time, and T, is the equivalent temperature.
Each of these equations use module temperature as the stressor
variable.

C. Thermal Cycling

Research focused on thermal cycling evaluates the potential
damage to the solder bond interconnections. For example,
Vasudevan and Fan implements an acceleration factor formula
that compares the field and test samples as shown in Equa-
tion &
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where f is the thermal cycling frequency, AT is the change
in temperature, T is the maximum temperature, and “field”
and “test” stand for the in-field and indoor test chamber
environments [12]. In other work, Bosco et al. uses Equation 4
to derive an equation that estimates material damage [13]. In
this work, the stress imposed on the solder bond is estimated

on Equation 5]
- ] )
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where C is a scaling constant, T,,,, is the average maximum
module temperature, AT is the mean daily maximum temper-
ature change, and r(T) is the number of times the temperature
crossed a threshold. The two thermal cycling damage estimates
consider the module temperature as the stressor variable.

D. Humidity

Past literature uses relative humidity (RH) to estimate the
degradation caused by moisture. The approach implments a
formula known as the Peck equation described in Equation [:

D= C(AT)"(T(T))mexp{

Rp peck = A 6XP<M%>RHW (6)

where RH is the relative humidity, Q, is the activation
energy set to 0.49, k; is Boltzmann’s constant, Tm,,,q; is the
maximum module temperature, and the constants A and n were
set to 0.0037 and 3.82 respectively [14]. A similar formula,
known as the Eyring model uses the RH variable as well to
estimate the module’s degradation [[14]:
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III. METHODOLOGY

This experiment evaluates the degradation stressors spatial
distribution in the U.S. using the GLDAS data set. The
evaluation begins with a comparison of the GLDAS variables
with the features in the degradation model equations; indirect
matches requires the implementation of a translation that
calculates the degradation stressor from the GLDAS variables
(i.e. ambient temperature to module temperature). Then, the
original GLDAS variables are compared with the translations
using the contour maps to identify correlations. This evaluation
defines which translations are necessary for creating climate
zone classification schemes.

A. Data

The GLDAS is an environmental data set for land masses
throughout the world. The data set uses land surface models
and actual data to generate accurate weather states. For this
work, the 0.25-degree resolution maps provides an assessment
of the U.S. climate for 2015 and 2016 calendar years. The
comparison calculations, such as the plane of array (POA)
irradiance, did not include the high resolution data and instead
reduced the data set to decrease computational time. The POA
estimate is computationally cumbersome because of the angle
of incidence (AOI) calculation.

B. Environmental Variables

The environmental variables present in the degradation
model equations, described in Section [, do not correspond
directly with the GLDAS data set. Therefore, the stressor
variables require a translation to convert global horizontal
(Epoa) irradiance to plane of array irradiance (Epp4), and
ambient temperature (T,) to module temperature (T,,,). Also,
the GLDAS data set does not include RH, and instead provides
specific humidity (SH). Therefore, the experiment calculates
the RH based on SH, pressure, and T,. These variables and a
general overview of their associated functions are summarized
in Table [:

TABLE I
DEGRADATION & GLDAS VARIABLES

GLDAS Translation

Epoa = f(sun & PV angles, Eqrrr)
Tm = f(E, Wind, Tg)

RH = f(Tq4,Specific Hum., Pressure)

No.  Degradation Variable
Global Horizontal Irrad.
Module Temperature
Relative Humidity

W =

C. Stressor Contour Maps

The geographic assessment of PV degradation stressors
includes the creation and evaluation of contour maps. The
maps compare the spatial diversity across the U.S for en-
vironmental variables available in the GLDAS data set (i.e.
global horizontal irradiance, ambient temperature, and specific
humidity) with the PV degradation variables as defined by past
research (i.e. solar radiation, module temperature, and relative
humidity). The solar radiation maps consider both the GLDAS
Global Horizontal (GHI) data and the calculated POA.



1) Solar Radiation: The GLDAS solar radiation variable
is described as short wave radiation on a horizontal surface.
This equates to the Egy; shown in Figure [I. However, the
Epoa provides a more accurate representation of the amount
of exposure to solar radiation. Therefore, the present work
calculates the Epp 4 based on Equation [8:

EPOA = (EDN])(COS(AOI)) (8)

where Epnr is the direct normal irradiance, and AOI is the
angle of incidence. The AOI calculation used the Python
PVLIB function that considered the solar azimuth and zenith
angles associated with the sun and the array’s angles [15],
[16]. The Epny component estimate used Equation 9]

Epnr = (Egur — Epnr)/(cos(Z)) 9

where Ep g1 is the modeled diffuse horizontal irradiance, and
Z is the solar zenith angle. The Epp estimate is based on
the multiplication of the diffuse fraction [[17] times the Egg;.
The experiment assumed that the modules faced due south and
had a tilt angle that was equal to its latitude.
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Fig. 1. The GLDAS data set provides the global horizontal irradiance
(Eggr). The estimate of the plane of array irradiance (Epo4), which is
the radiation perpendicular to the solar modules, required the Eg gy, as well
as the sun and PV module angles.

2) Temperature: The degradation of PV modules depends
on the internal temperature and the changes in temperature.
However, the module temperature values are not provided by
standard data sets and estimates required the implementation
of Equation [10] [18]:

T, = Elexp(a +bW)] + T, (10)

where E is the irradiance, W is the wind, and T, is the ambient
temperature. The constants a and b, which are empirical deter-
mined for different module types and mounting configurations,
were set to be -3.47 and -0.0594 for an open rack glass on
glass module type [18]. The wind and ambient temperatures
come from the GLDAS data set. In this work, the Epp4 and
Eg g1 are used to estimate the respective module temperatures,

which are refered to as T,,,,, and Ty, ;-

3) Humidity: The evaluation of humidity compares the SH
with the estimated RH. SH is the mass of water vapor in a
unit of moist air. The RH defines the amount of water vapor
that is present in air depending on the temperature. RH is be
expressed as the ratio that compares the specific mass of water
vapor with the specific mass of dry air:

RH =% ~ 06225
mq p
where m,, is the specific mass of water vapor, my is the specific
mass of dry air, es is the saturation vapor pressure, and p is
the atmospheric pressure. The saturation vapor pressure can
be estimated using Equation [I2}:

17.67(T — TO)>

Y

T —29.65 12
where T is the ambient temperature in kelvin and T, is
the reference temperature that was set to be 273.15 K. The
saturation vapor pressure equation (Equation [12) was plugged
into Equation [11] and the resulting function to calculate RH is
shown in Equation [13

RH = 0.26(P)(SH) {exp(%ﬁ%?)] - (13)

where P is the atmospheric pressure, and SH is the specific
humidity.

The experiment compares the specific humidity with relative
humidity to identify key differences that could impact the re-
view of the degradation stressor across the U.S. Since the two
metrics use different units, each are converted to a normalized
value between 0 and 1 as described by Equation [14:

es ~ 611 ~exp<

x — max(x)

“~ max(z) — min(z) G

n
where x is the humidity variable, and n, is the normalized
variable.

IV. RESULTS

The results section describes the geographic climate trends
for solar radiation (Section [V-A)), temperature (Section [V-B)),
and humidity (Section [V-C).

A. Solar Radiation

The average Egpy is plotted in Figure 2. The highest
amount of radiation is in the southwest and decreases to the
north, northeast, and east. The radiation is also high in the
southwestern part of Florida. The comparison between the
GLDAS provided Egy; and the calculated Epp 4 identifies
differences that are different across the U.S.

The difference between the Eqpr and Eppa ranged be-
tween -2 to 80 W/m? (-6% and 30%) across the U.S. The
contour plot in Figure 3 indicates that the largest difference
occurres in the south and decreases to the north. Areas in
the south part of the country has differences of about 16-
32W/m? and reaches as high as 80W/m? in Mexico. The
middle latitudes had smaller differences that ranged between
5 and 16W/m?. The north has a calculated Epo 4 greater than



the Egpr, and thus the difference drops slightly below zero.
The relatively low differences imply that the Eqy represents
the spatial distribution for irradiance well.
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Fig. 2. Average annual global horizontal irradiance shows high values in the
southwest that decreases to the north, east, and northeast.
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Fig. 3. The difference in plane of array and global horizontal irradiance varied
across the U.S. The southern part of the country has larger differences, while
the north had smaller values that are near zero and negative in the far north.

B. Temperature

The average T, varies across the U.S. as shown in Figure 4.
The hottest locations tend to be in the south along the Gulf
of Mexico and in the west near the boarder of Arizona
and California. As expected, the Rocky Mountains and the
far northeast states had the coldest average temperatures.
However, T, is not a variable in the temperature and thermal
cycling degradation models. Therefore, Section [V-BI] and
compare T, with T,, ., ,, and identify the resemblances
between T,,.,, and T,,,,, respectively.

1) POA Module vs Ambient Temperature: The difference
between T, and T,,,,, ranges between -6°C and -3°C as
shown in Figure 3. The largest differences occur in the south-
west and decrease to the northeast. The southwest experiences
a larger discrepancy between the T,,,,, and T, because of
the high solar radiation present in that region. Furthermore, the
overall bias is linked to the impact of irradiance on the module
temperature that does not effect T, as much. The general bias,
and range of differences suggest that T, does not correlate

well with the T, ,. The next section compares the module
temperature calculated using GHI and POA irradiance.

2) POA vs GHI Module Temperature: The difference in
module temperature based on Eg g and Epp 4 inputs, shown
in Figure f, ranged from -0.3 to 2.4°C. This contour plot
resembles the map that compares POA and GHI irradiance
(Figure [3). Both contour maps have differences that are low
and below zero in the north, and shift to be larger and
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Fig. 4. Average annual ambient temperature across the U.S.
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Fig. 5. The difference in module temperature (at POA) and ambient
temperature was larger in the southwest and smaller in the northeast.
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Fig. 6. The difference in module temperature based on GHI and POA

irradiance varied across the U.S. In the north, the difference was small and
slightly below zero. In the south the difference ranged between 0.3 to 1.2°C.



above zero in the southern part of the country. The small
differences suggest that T, ,,, provides a reasonable estimate
of a modules temperature throughout the U.S.

C. Humidity

The humidity analysis identifies spatial differences between
SH and RH. The contour plots for each humidity metric are
plotted in Figures [7 and §. The SH map, in Figure [7, indicates
that there are significant amounts of moisture along the Gulf
Coast that decreases steadily to the north, northwest, and west.
Similarly, the RH has the highest values in the southeast region
as shown in Figure 8. In contrast, the west part of the country
experiences relatively low, and constant SH; the RH is more
spatially diverse in this same area.

The similarities and differences between the specific and
relative humidity are evident in Figure [9. The comparison
showed that the southern part of the country has similar SH
and RH. However, the SH and RH diverges in the northeastern
region of the country because SH is spatially diverse while
the RH is relativley constant in this area. Similarly, in the
northwest, the SH is very low and tends to remain the same
throughout the region, whereas the RH varies. Lastly, the
contour map identifies that the most significant differences
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Fig. 7. Normalized specific humidity contour map shows that the southeast
has high humidity, while most of the west experiences very low humidity.
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Fig. 8. The normalized relative humidity contour map indicates that the
southeast has high humidity and the west is lower but spatial diverse compared
to the specific humidity.

are in the high altitudes of the Rocky Mountains and Sierra
Nevadas. As a result, the SH does not correlate well with RH.
However, it is unclear why RH is used instead of SH since
SH provides a better metric for understanding the amount of
water present in the air.
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Fig. 9. Normalized difference in average annual specific and relative humidity
showed that the southern part of the country had similar results and diverged
significantly in the north.

V. CONCLUSION

This paper evaluates the spacial distribution of environmen-
tal stressors in the U.S. The GLDAS data set, which provides
ambient temperature, irradiance, and specific humidity to es-
timate the stressor variables used in past literature to estimate
degradation damage. Contour maps provided a review of the
spacial distribution of the environmental stressors (module
temperature, irradiance, and humidity). The maps showed
the differences between the GLDAS data and the computed
stressor variables.

The analysis showed that the GLDA data set alone works
for certain stressors but not all. The POA irradaince, used in
the estimate of UV degradation, can be represented using GHI.
However, the ambient temperature, provided by GLDAS, does
not correlate well with the module temperature and therefore
the calculation of module temperature is required. The past
work used relative humidity to estimate the impact of moisture
on module degradation. Relative humidity, however, does not
match well with the GLDAS provided specific humidity.

The results from this work can provides a basic review
of stressors used to model PV degradation and identifies the
available data that can represent the stressors geographically.
Other work can use the available data to develop climate zone
classifications that are specific to PV degradation.
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