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Motivation

Problem

 Shock-wave phase distortions prevent accurate 3D interrogation
in supersonic, hypersonic, and explosive environments.
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Motivation

Problem

« Shock-wave phase distortions prevent accurate 3D interrogation . Fragments from Exploding Detonator
in supersonic, hypersonic, and explosive environments. Single-shot hologram from 20 Hz Picosecond Laser

 Shock-wave motion often requires ultra-high-speed acquisition

for time-resolved measurements. PC DI H
Existing Approaches focused at x = 0-

* Testing in vacuum changes the environmental conditions.
« Synchrotron x-ray testing requires experimental repetition to
get 3D information [Willey 2016].

Proposed Solution/Objectives

r )

» (Cancelling the distortion using phase-conjugate digital in-line
holography (PCDIH)

 Track hypersonic fragments in 3D from an explosive detonator
through shock-wave distortions

« Acquire data at 2 to 5 MHz (increase of 5 orders of magnitude
from 20Hz) using pulse burst laser.

» Understand the physical mechanisms that produce unknown
features in DIH and PCDIH images




Phase Conjugate Mirror for Distortion Cancellation
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PCDIH with Nanosecond Pulse Burst Laser

* HWP—half wave plate

y:

* QWP—quarter wave plate
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Custom modified Spectral Energies pulse burst to operate up to 5 MHz
2 Shimadzu ultra-high-speed cameras operating up to 5 MHz
1 imaging & 2 pump beams (1 reflected for improved efficiency & alignment)

Simultaneous DIH and PCDIH measurements.

Phase conjugate mirror made via degenerate four-wave mixing in a liquid cell.

Inherent optical isolation in the pump beams

* TFP—thin-film polarizer

* BS—beam splitter

» PBS—polarizing beam splitter

» P—polarizer

* ND—neutral density filter

 LF—laserline filter, 0.2 nm FWHM

* Nanosecond Pulse-burst: ~3 ns
pulses, >1.5 ms burst, 12 s between
bursts, pulsed seed, 2 double-pass
diode-pumped amplifiers, 2
double-pass 9mm flashlamps, 2
single-pass 12mm flashlamps, 30
mm LBO crystal

« Ultra-high-speed Cameras:
Shimadzu HPV-X2, 400 x 250 pixels,
32 um pixel pitch, 10-bit depth, 5
MHz, 128 frames max

« Polarizations: pump1 = p, pump?2
- s, imaging 2 p, phase
conjugate > s
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Laser-spark plasma-generated shock-waves
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PCDIH sucessfully cancels distortions generated by shockwaves

What is the source of the remaining interference patterns in PCDIH if phase is cancelled?
Why do the shock-waves come into focus in DIH and PCDIH?

Does the order of the wire and phase distortion mattere
What does the shock-wave phase distortion look like as a function of time?
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[Guildenbecher 2018]

200 pm diameter wire

Continuum Surelite Ill focused laser
10 Hz, 1064 nm, 5 ns pulse duration
operating at 400 mJ per pulse

Numerical Simulation

Pulse-burst Experiment
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« DIH interference patterns are due to the phase discontinuity
« Shock-wave motion during laser beam time-of-flight (6.8 to 12.8 um) produces faint fringes
« From stationary supersonic shock-wave experiment, we know refraction also plays a role



Laser-spark plasma-generated shock-waves
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Laser-spark plasma-generated shock-waves
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Laser-spark plasma-generated shock-waves

Burst Profile Second Harmonic Conversion Efficiency s PC Mirror Reflectivity

: 100 : : : : : : 1 210 ™ :
—— 1 MHz , Ayl? " w 5
- i I— — o e = —— = tan” ) A1 Al
= ! 2 MHz 2 ° é R, |As[? tan (_'—)"”H(w’}\' 11 Ao >
© ~45 mJ/pulse — 5MHz = - ° >
2 S gl logistic fit S o5l ot
205 .8 E an<4 fi
£ ~17 mJ/pulse L ® Data ° ® Data
Fit Fit
0 0 1 1 1 1 1 T 0 I
0 200 400 600 800 1000 1200 0 100 200 300 400 500 600 700 0 2 4 6 8

Pump Energy (mJ/pulse)

Time (us) Peak Irradiance (MW/cm2)

5 MHz Acquisition




Explosively generated fragments

Shock-waves
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RP-80 EBW from Teledyne RISI
custom 180 pm thick brass cap
Placed 50 mm above field-of-view
facing downward




Explosively generated fragments
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Explosively generated fragments
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Conclusions and Future Work

« We introduce an ultra-high-speed PCDIH technique for phase-distortion cancellation for 3D imaging.

« Custom modified pulse-burst laser and new optical design for improved alignment are utilized.

» Demonstrated > 5 orders-of-magnitude increase in speed from 20 Hz up to 5 MHz.

 This work represents the fastest digital in-line holograms collected to date.

 Simulations show that shock-wave edges are visible and in PCDIH due to shock-wave motion and refraction.
 Future work aims to improve PC mirror efficiency with different optical designs and PC mirror materials.
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