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| AM parts exhibit frequent disqualifying flaws in addition to significant variability. @ Sandia
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28 AM AISi10Mg medium conventional tensiles 45 AM 304L medium conventional tensiles

Brittle and strong, possibly due
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Is there a critical porosity-manufactured defect relationship
which can be developed to qualify components for safe use?



Damage tolerant approach

3.

4.
5.

Assume all AM components have flaws

Which flaws matter?

Identify flaw types
Cracks
Voids
Bulk porosity
Microstructure-based flaws

Print intentional flaws of varying sizes and types
Predict critical flaw sizes in different regions for each flaw type

Non destructively inspect each component for critical flaws
Critical flaw size is now defined for each region of the part.
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FE model including flaw with microstructure !
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. Additive Manufacturing Details @ Sandia |

Direct Metal Laser Sintering (DMLS)
Powder Bed

Ductile: SS 316L
= Renshaw AM 400
= Nominal Power 200 W, hatch 0.011mm

Relatively Brittle: AlSi10Mg

=  EOS M290 Solid Laser Melting

= Build Plate A 370 W, 1300 mm/s, hatch 0.019 mm
= Build Plate B 277.5W, 1300 mm/s, hatch 0.019 mm Build Plate Layout
= Build Plate C 185 W, 1300 mm/s, hatch 0.019 mm




Microstructural details affects material behavior less than flaws (porosity) @ Sandiia
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i.e. Steel is Steel, Aluminum is Aluminum Laboratories

AlSi10Mg

 Build Plate A Laser Power 370 W
 Build Plate B Laser Power 277.5 W
 Build Plate C Laser Power 185 W

SS 316L AlSi10Mg
W.R.T build W.R.T build
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c | 316 Stainless Steel vs. AlSi10Mg (Laser Powder Bed) @ Sandia |

Stress (MPa)

316 Stainless Steel
Kic > 120 MPavm

= Charpy Impact toughness ~120 ft-lbs

= Ductility = 60%
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AlSi10Mg (heat treated)

= K"~ 15 MPavm

= Charpy Impact toughness ~8 ft-lbs
= Ductility ~ 10%




Tubular Specimens

= SS316L and AlSil0Mg

= Pristine

=  Manufactured Defects
* Quarter Crack

* Through Hole
* Internal Void

Quartercrack 2 mm Through 05 mm Internal
hole (1 wall) void

)
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Experimentation

= MTS Landmark Load Frame

= Tension with clevis adaptors

= 2D Digital Image Correlation
= Vic Gauge 2D
= Surface roughness for speckling

Fractography at Clemson’s Advanced

Material Research Laboratory
- Hitachi SU6600 SEM

uartercrack 2 mm Through 0.5 mm Internal
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SS 316L Internal Void

SUB600 20.0kV 23.0mm x80 SE

SU6600 20.0kV 18.3mm x60 SE

500um
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SS 316L Through Hole S SS 316L Quarter Crack
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R NEERE

SU6600 20.0kV 18.7mm x70 SE

SU6600 20.0kV 21.0mm x50 SE
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CT Images SS 316L @ Sandia

Through Hole

Quarter Crack

Voxel size: 30 pm x 30 pm x 30 pm
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SS 316L Components. Flaws affect force proportionally. @ Sandia |
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5 “Pristine” fractures appear smooth and more brittle looking.

1 1 J | ' 1 1 l’ U 1 1
SU6600 20.0kV 30.8mm x60 SE 500urn 500um

Sharp, jagged edges on fracture surface, indicating Flat surface indicative of brittle fracture Unmelted particles on fracture surface
brittle fracture. Not cup-cone ductile dimples

SUB600 20.0kV 30.9mm x80 SE 500um

50 T T T T

= Consistent with low post-peak ductility.
=  Print location effects?
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3 Defect Fractography Key Features Sandia
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" AlSi10Mg Build Plate Comparison of Pristine Tubular Specimens @ Sandia

Bk —
AlSI10Mg Tubular Specimens- Pristine
Build Plate A (Laser Power 370W)
Build Plate B (Laser Power 277 .5W)
20 Build Plate C (Laser Power 185W)

— Build Plate A
—Build Plate B
— Build Plate C

Force (kM)

Plate A Plate B Plate C
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Force (kN)

316 Stainless Steel
= K=120 MPavm

= Charpy Impact toughness >120 ft-lbs
= Ductility = 60%
"""" prisine
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Displacement (mm)

Hole reduces strength by 10%
and ductility by 20%

Stress (MPa)

400 ||,

200

100

: Flaws impact AlSi10Mg more than 316L Stainless Steel

AlSil0Mg

= K=20 MPavm

= Charpy Impact toughness >8 ft-lbs
= Ductility = 10%
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Build Plate A Build Plate B Build Plate C

Voids Unmelted particles

Fractography of AlSi10Mg Tubular Specimens Sandia i

Many voids and unmelted particles

SU6600 3.0kV 9.8mm x40 SE 1.00mm SUB600 3.0kV 9.2mm x5 1.00mm

WA
N4 s 8 T

Brittle fracture is seen in all AlSi10Mg tubular specimens



Force (kN)

AlSi10Mg Tubular Results Sandia
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Plate A Plate B Plate C
Defect-type driven Defect-presence driven Bulk porosity driven
25 — ; ; 25 — 25 —
AlSi10Mg Tubular Specimens AISITOM .
. g Tubular Specimens
Build Plate A ( Laser Power 370W) Build Plate B (Laser Power 277 5W)
AISi10Mg Tubular Specimens i
20 — 20 20 — |Build Plate C (Laser Power 185W) I
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= Brittle fracture is seen in all AlSi1l0Mg tubular specimens (no post-peak ductility)
= Quarter crack was printed and may not be fully separated

= Distributed porosity can be more important than large discrete flaws.
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Bulk Porosity Defects

Multiple Defects Acting Together

)
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distributions of structural properties.

1. Self-aligning
‘drop-in’ grips

2. Non-contact virtual
extensometer with “live”
digital image correlation

High throughput tensile testing, ~30 samples per hour, gives statistical
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3. Maximize software e e | =cui seiman

automation to reduce == e LE e —

operator burden
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B. Salzbrenner et al., J Mater. Process. Tech., 2017

6.25x 6.25 mm

: 1x1mm

2.5x2.5mm




o | Powder reuse of AlISi10Mg gives different levels of porosity and tensile @ ﬁg?igﬁm

properties for each build plate. Laboratories
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Lower strength specimens have substantially more small voids (20-50 pum)
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High throughput fracture surface imaging @ Sandia

= Imaged all 172 large HTT fracture
surfaces in the SEM

= Variable pressure secondary imaging

0.5 mm Build Plate 3




High throughput fracture surface imaging Sandia
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surfaces in the SEM

= Imaged all 172 large HTT fracture |
= Variable pressure secondary imaging




Void identification algorithm to measure porosity on fracture surfaces ﬁa?_dial
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Contrast Adjustment & Binary

Fit With Expanded Ellipse
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= |dentify voids on a fracture surface from high throughput SEM images.
= Multistep process does more than simple thresholding.

=  Algorithm allowed ~172 fracture surfaces to be analyzed—about 10x more
than was possible before.




Compare ductility to fracture surface porosity Sandia
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= Increasing fracture surface porosity by 1% decreases ductility by 0.5%.
= Fracture porosity is NOT equivalent to density.
= Relationship between fracture surface porosity and density?



Conclusions Sandia
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1. Flaws interact with other flaw types and with material properties.
2. Small ubiquitous flaws, bulk porosity, can overwhelm other flaws and drive mechanical behavior.

3. Ductility can be predicted by bulk porosity in that regime.
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Crust and porosity effects on unloading modulus Sandia
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Crust has dominant effect, but porosity is also meaningful.

Subtracting crust and porosity gives an unloading modulus near
74 GPa (ultrasound value).

Going forward, we can correct modulus based on unloading
modulus.




Crust and porosity effects on ultimate tensile strength Sandia |
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Full Area Adjusted For Crust + VF Adjusted by Unloading Modulus
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. Fractography of Al10MgSi Build Plate C Sandia
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Internal Void Pristine
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SU6600 20.0kV 22.9mm x50 SE SU6600 3.0kV 9.7mm x45 SE

Lack of fusion defects: Unmelted particles and voids are common in plate C specimens.



