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Peridynamics concepts: =)
Horizon and family

Laboratories

e Any point x interacts directly with other points within a distance o called the “horizon.”

e The material within a distance 0 of x is called the “family” of x, Hx.

Peridynamic equilibrium equation

/ f(q,x) dVq+b(x) =0

X

f = bond force density

* The peridynamic field equations

don’t use spatial derivatives H,= family of x
* so they are compatible with
cracks.

General references
SS, Journal of the Mechanics and Physics of Solids (2000)
SS and R. Lehoucq, Advances in Applied Mechanics (2010)




Simple particle discretization

h

= Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py (X, 1) = / f(x',x,t) dVy + b(x, 1)
H
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oyl = f(xp, %, 1) AVy + b]
keH

e Discontinuous Galerkin is another viable
method (Gunzburger, LS-DYNA).




Local-nonlocal coupling ) .

* Reduce cost by using a nonlocal method only near actively growing cracks.
* Single grid with variable spacing.

e Coarse grid: local (conventional) equations.

* Fine grid: peridynamic.

Damage

/

Finite difference FOUpling
or finite element Peridynamic interface




Continuum form of a splice connecting 2 PD
regions with different horizons

e Far from the interface, everything is as usual.
* Force states come from whichever horizon applies.

* Force density at x:
L(x) = x)(q — x) — T[ql{x — q)} dq

“”"'\ /

Force states
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Material model Tlx] = T*(Y*[x])

/

Tlx] =T~ (Y~ [x])




Continuum form of the splice, ctd. ) e,

* At points whose horizon includes points on the other side:
« Same expression for force density, but with material model “ghosted” from other
side of the interface.
« Material models must “agree” for a homogeneous deformation.
* i.e, the must produce the same partial stress tensor ¢ = [ T X & on both sides.

Small horizon .
Large horizon

SS., Littlewood, D. and Seleson, P., 2015. Variable horizon in a peridynamic medium. Journal of Mechanics of Materials and Structures




Continuum local-PD splice ) i

* Now let the small horizon approach zero.
* The local PDEs apply in R~ in the sense of a limit (assuming smooth deformation).
* The PD side still uses ghosting.

Lx)=V-0o
on this side Lix) = f%x{z[x](q —x) — T[ql{x — q)} dq
on this side
Local
Peridynamic




Discretized splice coupling method ) e

* Regions exchange displacements and velocities only (not forces).
* Each region sees material just like itself on the other side of the interface.

Peridynamic nodes

Displacement mapping

direction
o
Local (FD/FE) nodes
Coupling
| interface
1 position

o &% Local /, .
o == o
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Effect on waves )

« Waves pass through between regions without obvious distortion.
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Adaptivity video
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Compare coupled method vs. single
methods individually

* Coupled local-PD results are close to PD alone.
* Crack path is more reasonable than with local alone (using element death).

Local alone

PD alone

Coupled

Sandia
National _
Laboratories

13



g€ ul a|dwexa 3uljdno)
sauojeloge] _.__

[euonen
elpues




What does accuracy mean in coupling? ®is.

 The local and nonlocal regions are dogs and cats, respectively.
 They don’t like to talk to each other.
* There is no single right way to define the continuum coupling.
* Soitis meaningless ask which continuum coupling method is the most
accurate.
* The best we can do seems to be:
* Require the coupled solution to converge to the local solutionas § — 0.
* For fixed 6, require the discretized model to converge as Ax — 0.




Discussion ) pei

 Good:
 Allwe dois interpolate displacements.
* No need to define forces between the regions.

* Oneregion can be coarser than the other.
 Bad:

* The local and PD regions need to have the “same” material model.
e Otherwise the coupling fails to conserve momentum.

* Trick to ensure this consistency:
* Define the local material model by

o(F) = [T(FE)(§) ®¢.




