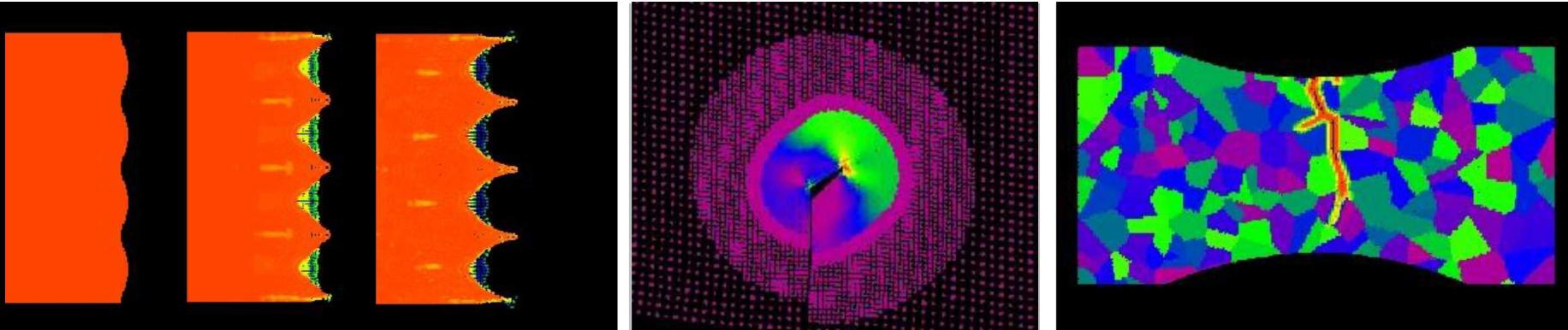


Exceptional service in the national interest



Local-peridynamic coupling with the splice method

Stewart Silling

Computational Multiscale Department
Sandia National Laboratories
Albuquerque, New Mexico

Outline

- Peridynamics basics
- Continuum splice
- Discretized splice
- Examples

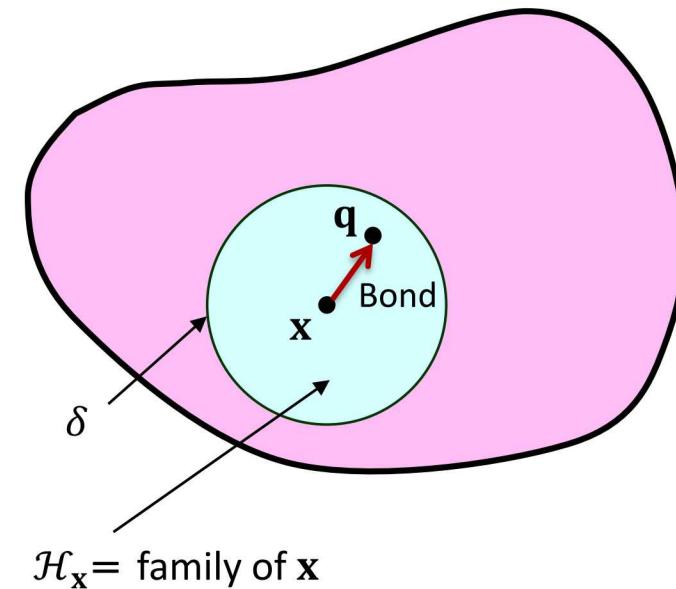
Peridynamics concepts: Horizon and family

- Any point \mathbf{x} interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of \mathbf{x} is called the “family” of \mathbf{x} , $\mathcal{H}_{\mathbf{x}}$.

Peridynamic equilibrium equation

$$\int_{\mathcal{H}_{\mathbf{x}}} \mathbf{f}(\mathbf{q}, \mathbf{x}) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

\mathbf{f} = bond force density



- The peridynamic field equations don't use spatial derivatives
 - so they are compatible with cracks.

General references

- SS, Journal of the Mechanics and Physics of Solids (2000)
- SS and R. Lehoucq, Advances in Applied Mechanics (2010)

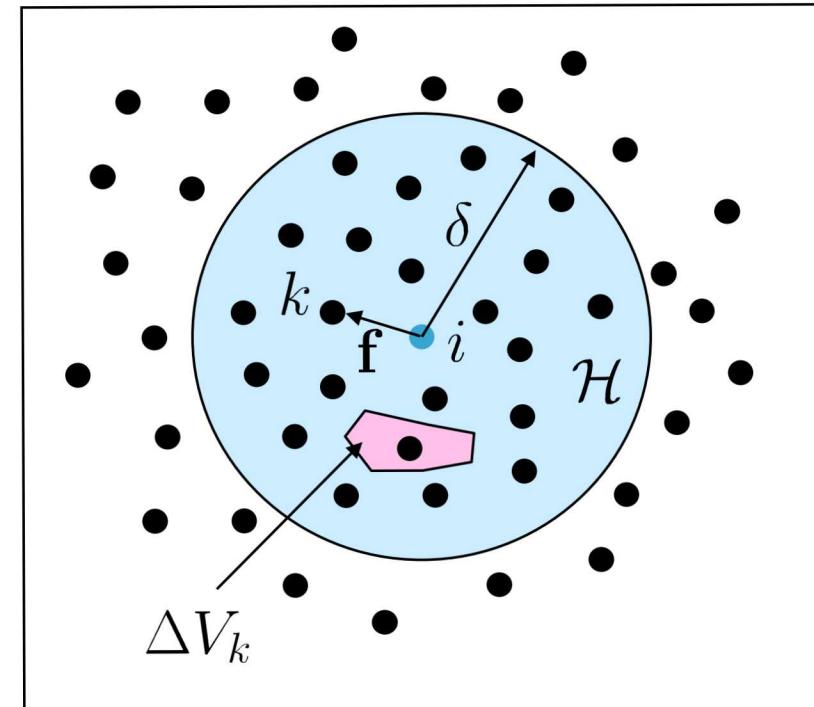
Simple particle discretization

- Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}, t) \, dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t)$$

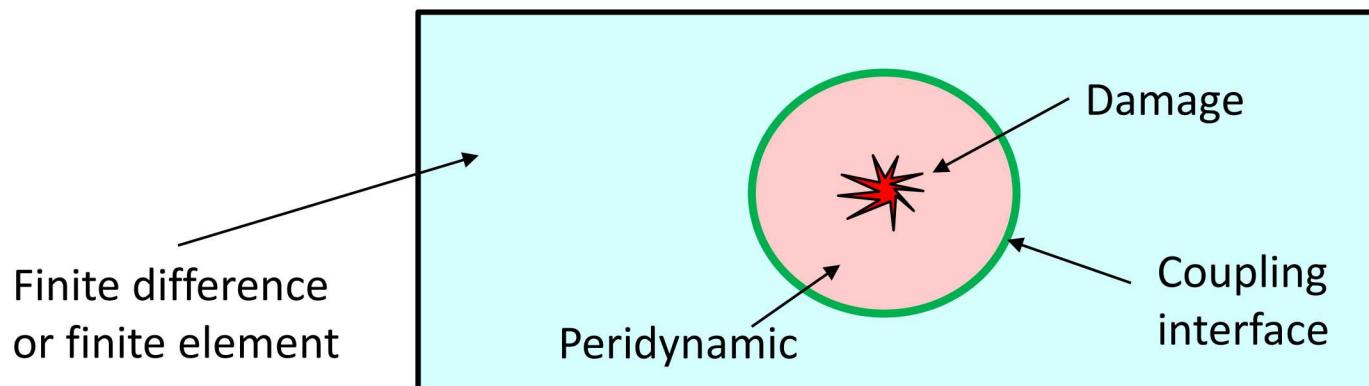
$$\rho \ddot{\mathbf{y}}_i^n = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_k, \mathbf{x}_i, t) \, \Delta V_k + \mathbf{b}_i^n$$

- Discontinuous Galerkin is another viable method (Gunzburger, LS-DYNA).



Local-nonlocal coupling

- Reduce cost by using a nonlocal method only near actively growing cracks.
- Single grid with variable spacing.
 - Coarse grid: local (conventional) equations.
 - Fine grid: peridynamic.



Continuum form of a splice connecting 2 PD regions with different horizons

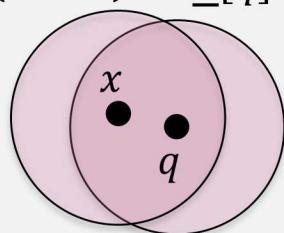
- Far from the interface, everything is as usual.
- Force states come from whichever horizon applies.
- Force density at x :

$$L(x) = \int_{\mathcal{H}_x} \{\underline{T}[x]\langle q - x \rangle - \underline{T}[q]\langle x - q \rangle\} dq$$

Force states

Material model

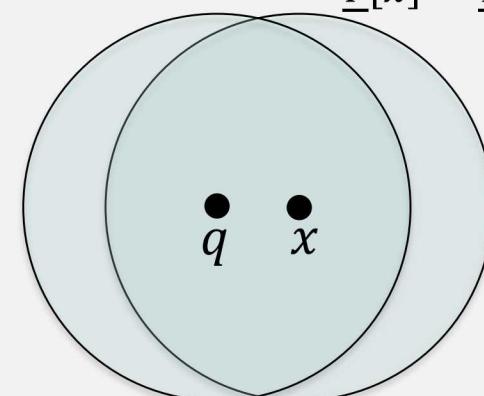
$$\underline{T}[x] = \underline{T}^-(\underline{Y}^-[x]) \quad \underline{T}[q] = \underline{T}^-(\underline{Y}^-[q])$$



\mathcal{R}^- \mathcal{R}^+
Small horizon Large horizon

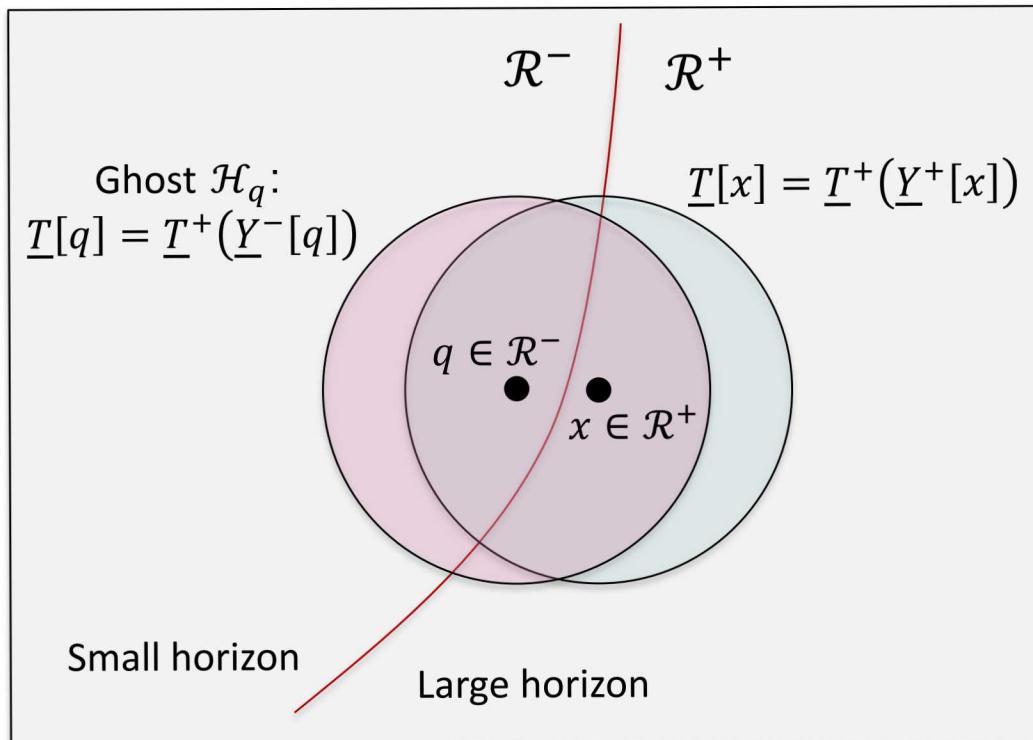
$$\underline{T}[q] = \underline{T}^+(\underline{Y}^+[q])$$

$$\underline{T}[x] = \underline{T}^+(\underline{Y}^+[x])$$



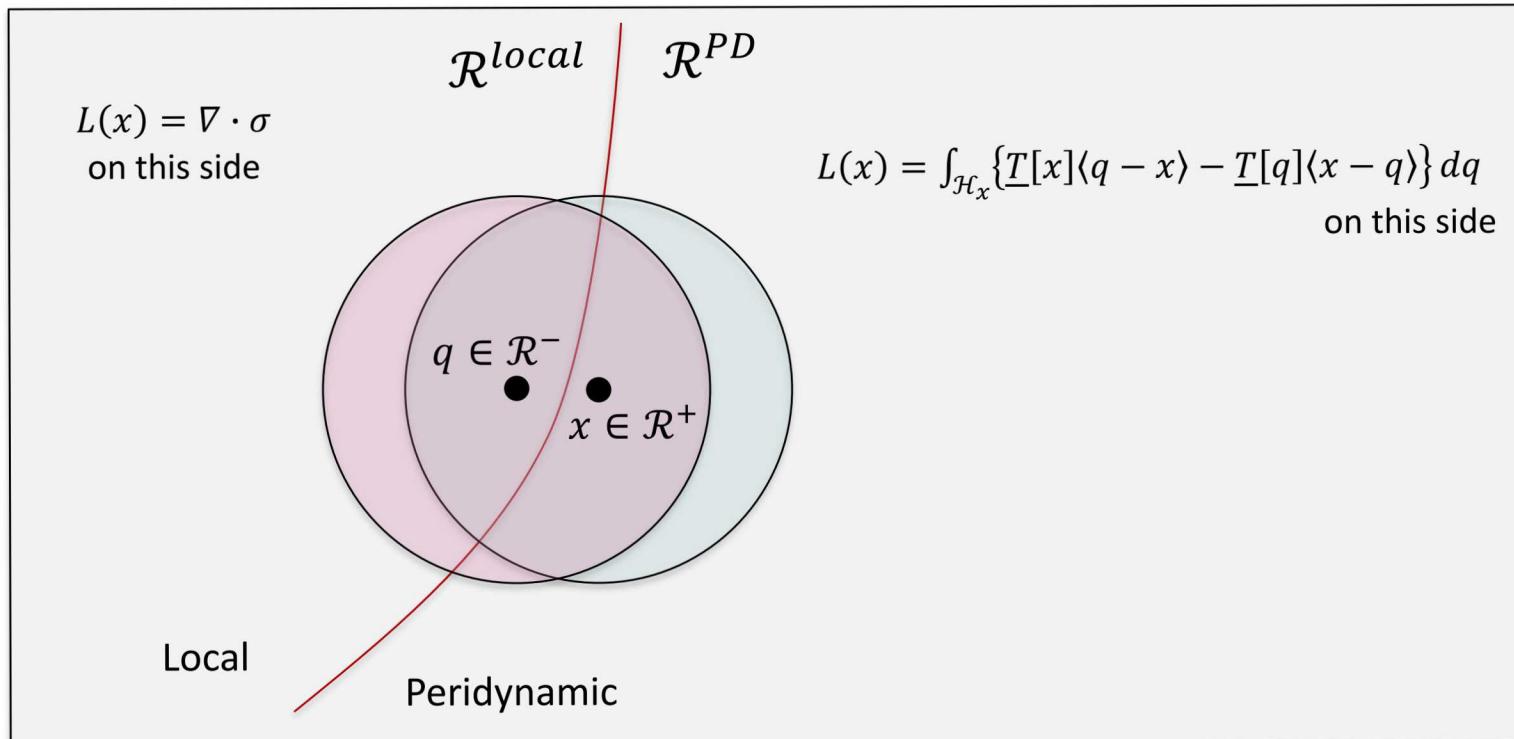
Continuum form of the splice, ctd.

- At points whose horizon includes points on the other side:
 - Same expression for force density, but with material model “ghosted” from other side of the interface.
- Material models must “agree” for a homogeneous deformation.
 - i.e., they must produce the same partial stress tensor $\underline{\sigma} = \int \underline{T} \times \underline{\xi}$ on both sides.



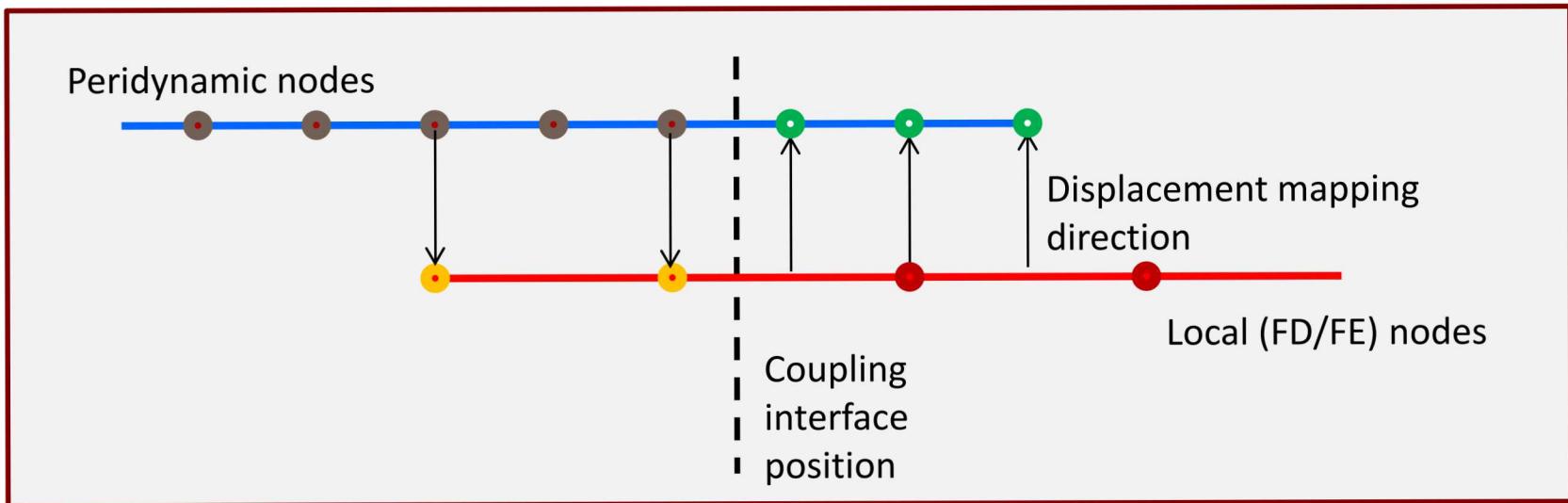
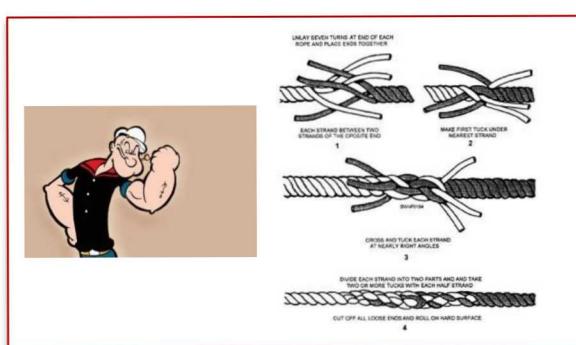
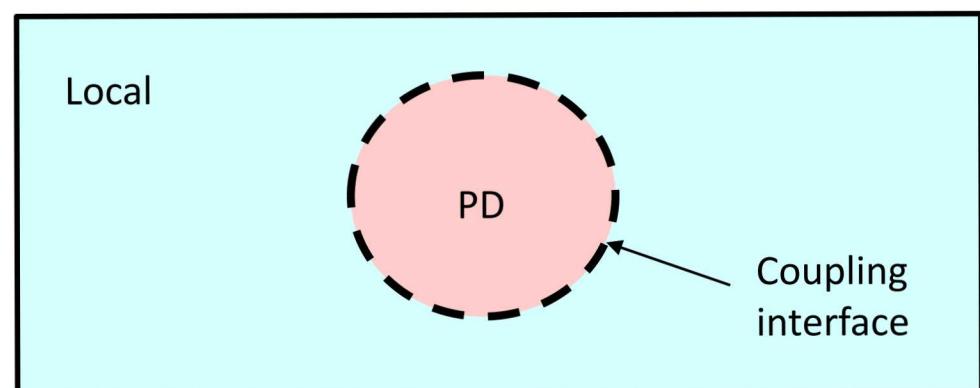
Continuum local-PD splice

- Now let the small horizon approach zero.
- The local PDEs apply in \mathcal{R}^- in the sense of a limit (assuming smooth deformation).
- The PD side still uses ghosting.



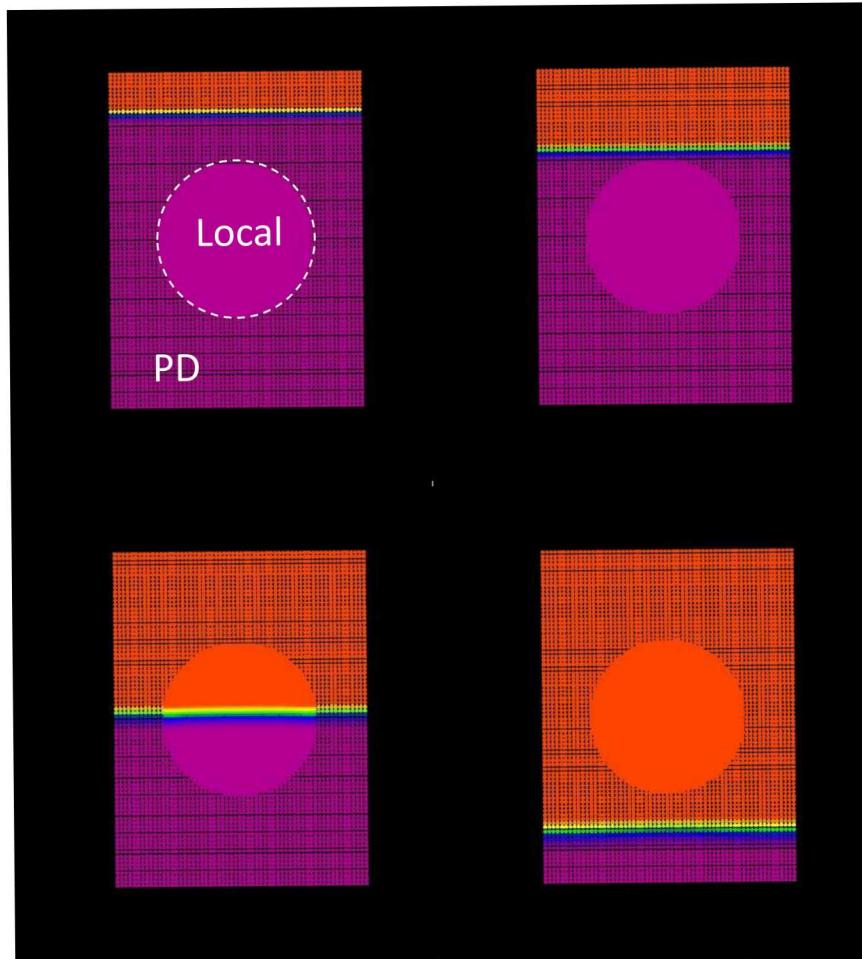
Discretized splice coupling method

- Regions exchange displacements and velocities only (not forces).
- Each region sees material just like itself on the other side of the interface.



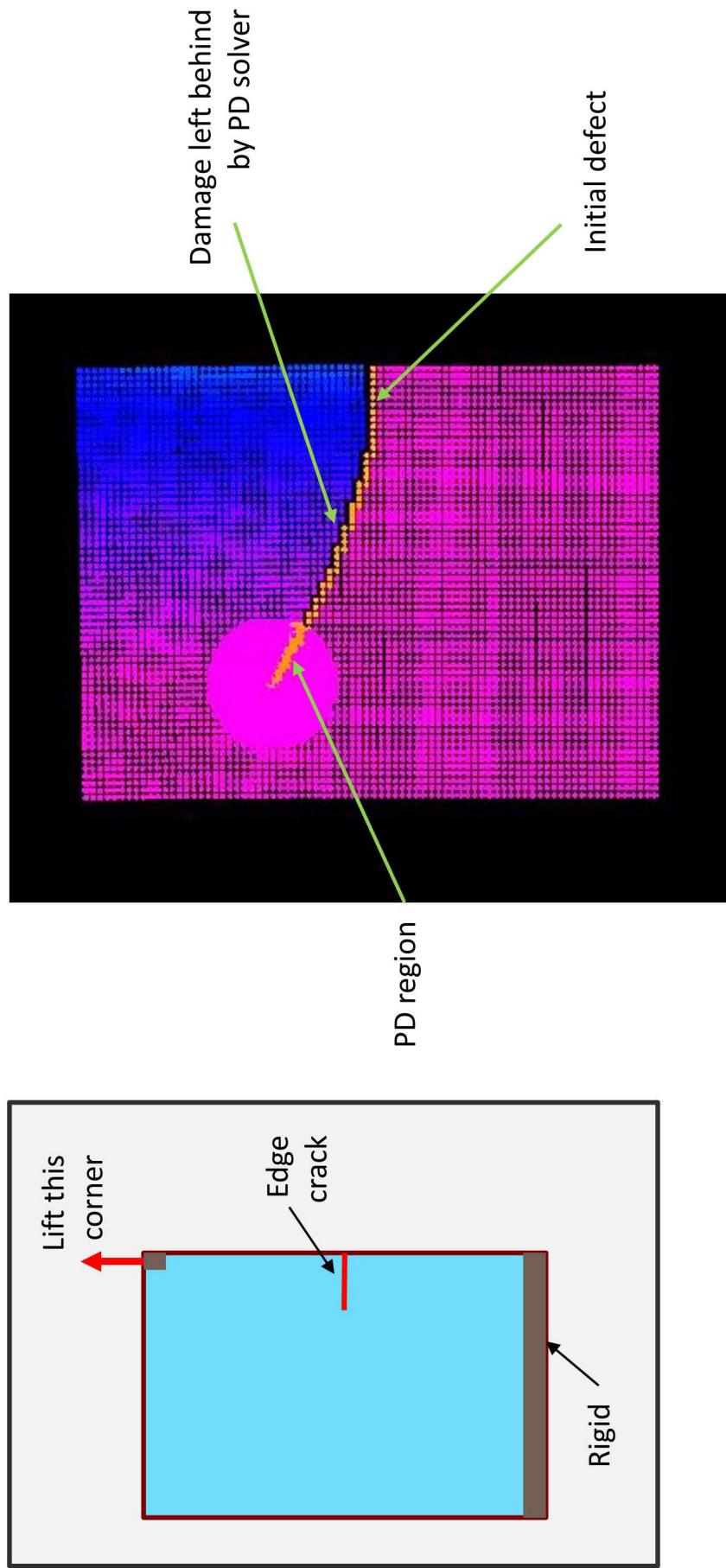
Effect on waves

- Waves pass through between regions without obvious distortion.

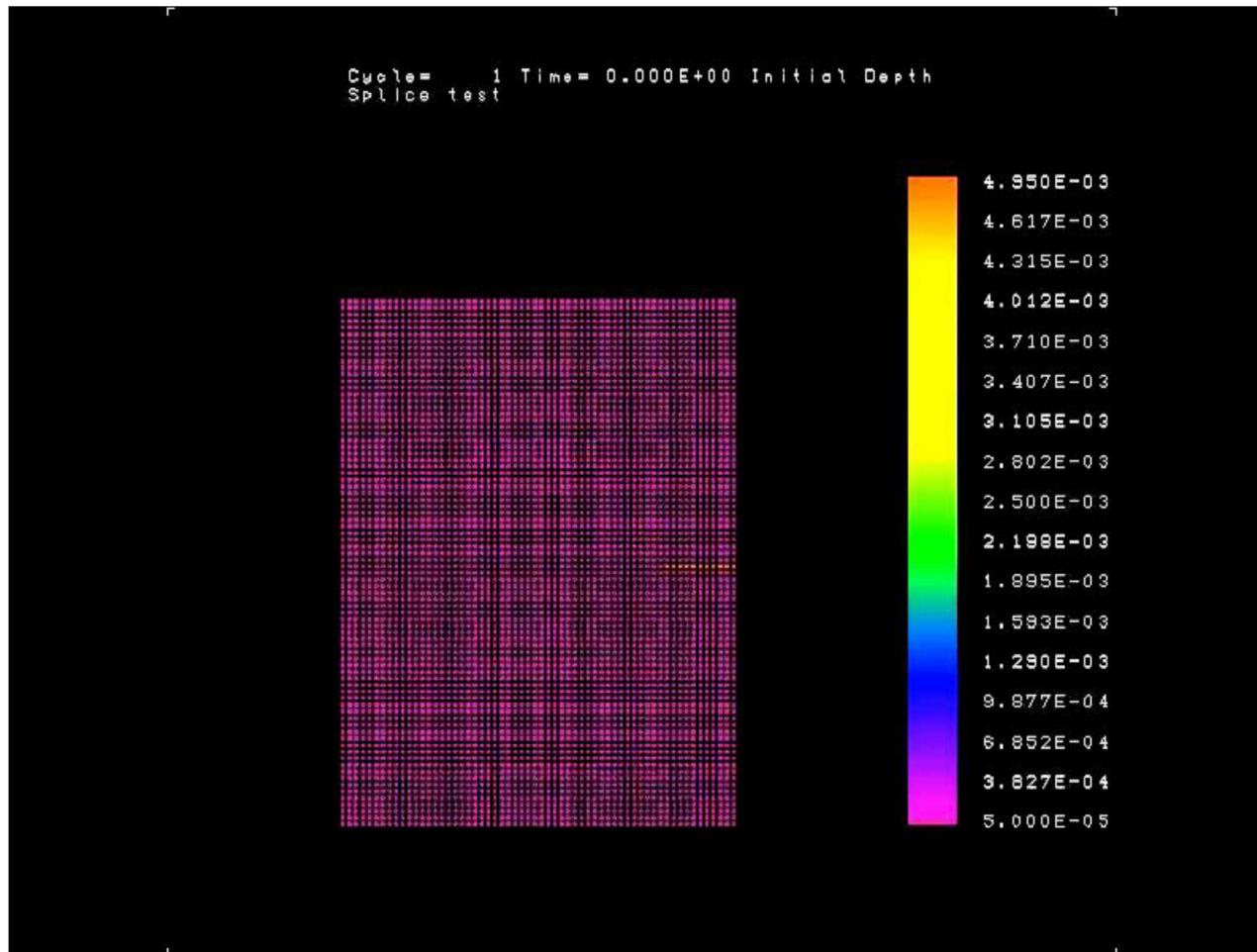


Adaptively moving the peridynamic region

- Peridynamic region follows the crack tip.
- Damage from PD is mapped back onto the local grid.

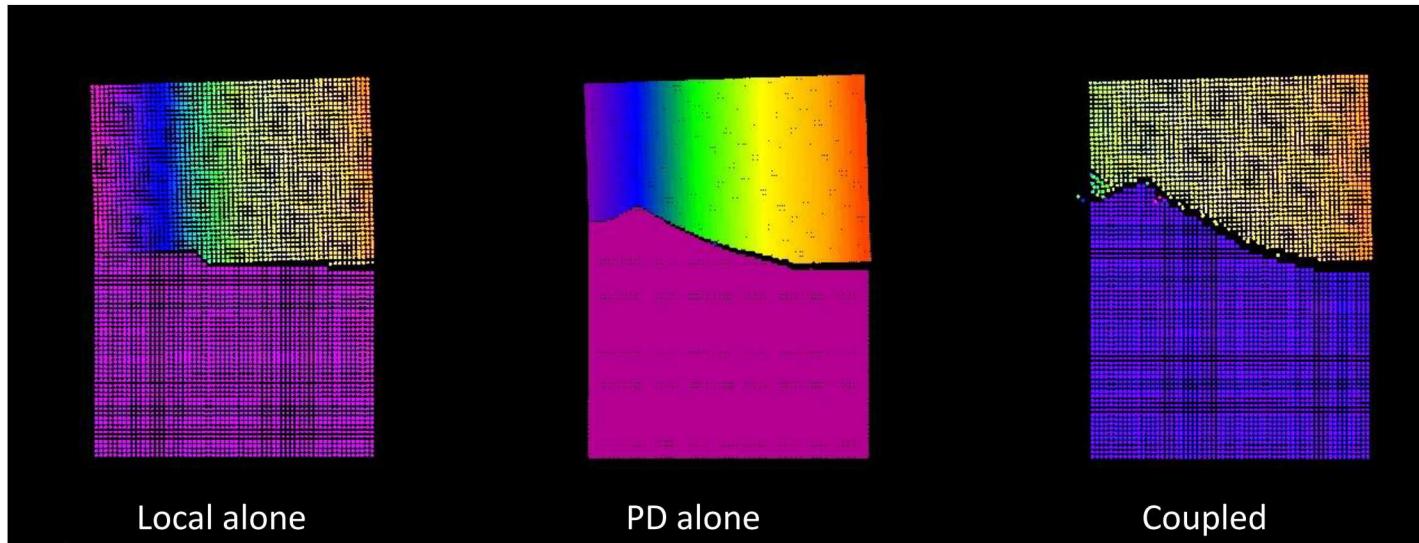


Adaptivity video

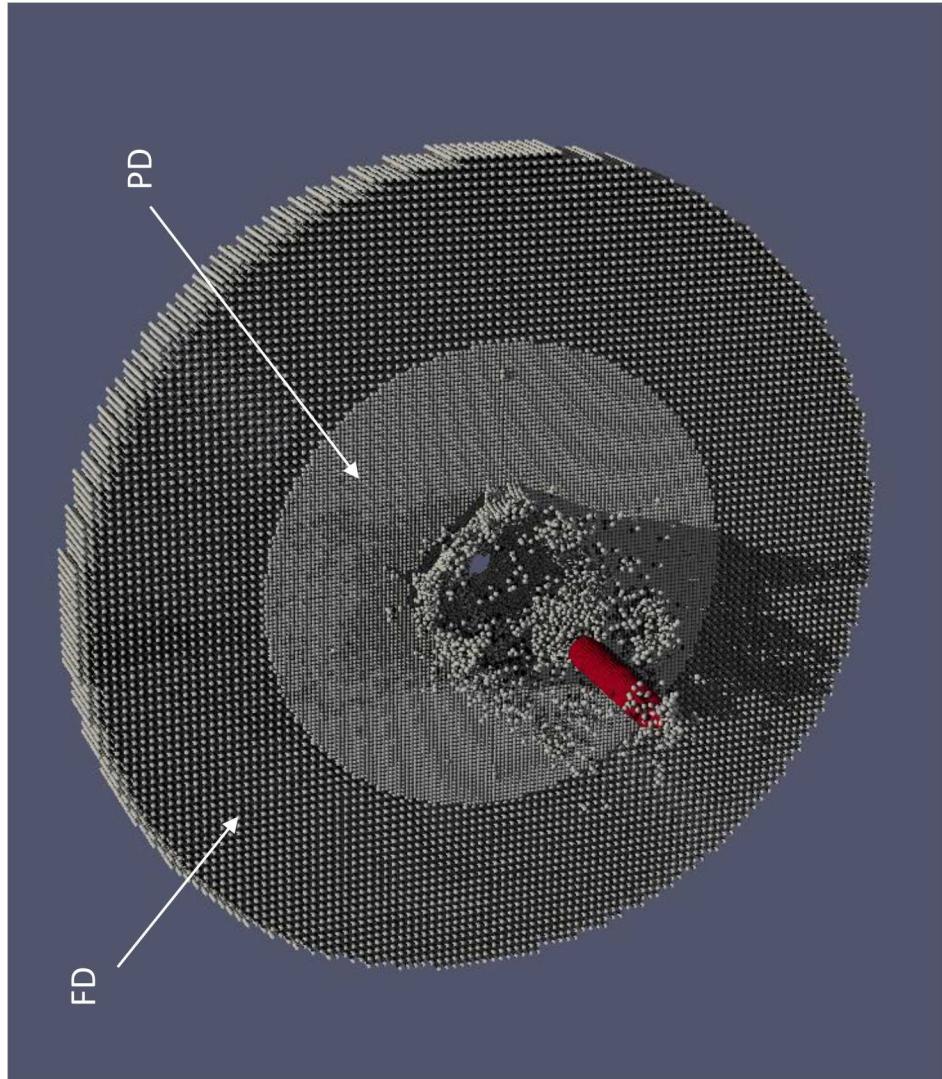


Compare coupled method vs. single methods individually

- Coupled local-PD results are close to PD alone.
- Crack path is more reasonable than with local alone (using element death).

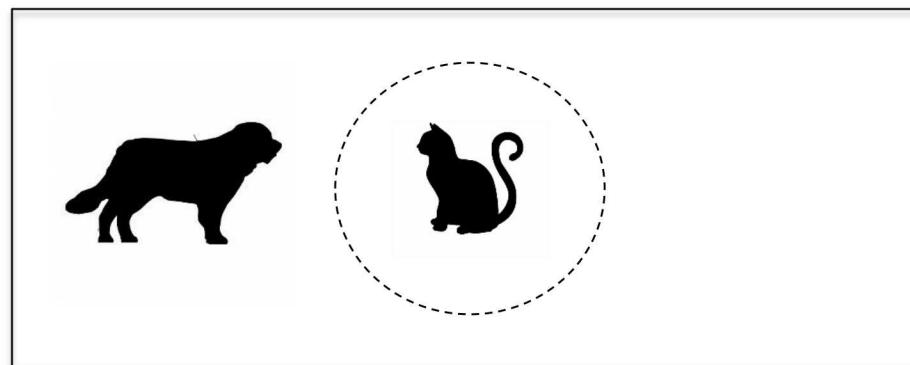


Coupling example in 3D



What does accuracy mean in coupling?

- The local and nonlocal regions are dogs and cats, respectively.
 - They don't like to talk to each other.
 - There is no single right way to define the continuum coupling.
 - So it is meaningless ask which continuum coupling method is the most accurate.
- The best we can do seems to be:
 - Require the coupled solution to converge to the local solution as $\delta \rightarrow 0$.
 - For fixed δ , require the discretized model to converge as $\Delta x \rightarrow 0$.



Discussion

- Good:
 - All we do is interpolate displacements.
 - No need to define forces between the regions.
 - One region can be coarser than the other.
- Bad:
 - The local and PD regions need to have the “same” material model.
 - Otherwise the coupling fails to conserve momentum.
 - Trick to ensure this consistency:
 - Define the local material model by

