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Peridynamics concepts:
Horizon and family
• Any point x interacts directly with other points within a distance 6 called the "horizon."
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• The material within a distance 6 of x is called the "family" of x,

Peridynamic equilibrium equation

f (q, x) dVq b(x) =

f= bond force density

• The peridynamic field equations

don't use spatial derivatives

• so they are compatible with

cracks.

ffx= family of x

General references

• SS, Journal of the Mechanics and Physics of Solids (2000)

• SS and R. Lehoucq, Advances in Applied Mechanics (2010)
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Simple particle discretization

• Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

pST(x, t) = f(xl, x, t) dVx, b(x, t)

/477 f (xk, xi, t) ,A,Vk + 1377

• Discontinuous Galerkin is another viable

method (Gunzburger, LS-DYNA).
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Local-nonlocal coupling

• Reduce cost by using a nonlocal method only near actively growing cracks.
• Single grid with variable spacing.

• Coarse grid: local (conventional) equations.
• Fine grid: peridynamic.

Finite difference
or finite element
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Continuum form of a splice connecting 2 PD
regions with different horizons

• Far from the interface, everything is as usual.
• Force states come from whichever horizon applies.
• Force density at x:

L(x) = f WxYq — x) — T[q](x — q)) dq
Ifx ,k

N

Force states
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Continuum form of the splice, ctd.
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• At points whose horizon includes points on the other side:

• Same expression for force density, but with material model "ghosted" from other

side of the interface.

• Material models must "agree" for a homogeneous deformation.

• i.e, the must produce the same partial stress tensor a= f T x on both sides.

SS., Littlewood, D. and Seleson, P., 2015. Variable horizon in a peridynamic medium. Journal of Mechanics of Materials and Structures
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Continuum local-PD splice
• Now let the small horizon approach zero.

• The local PDEs apply in R- in the sense of a limit (assuming smooth deformation).

• The PD side still uses ghosting.

L(x) = flfx[7:[x](q — x) — T[q](x — q)} clq

on this side

Sandia
National
Laboratories

8



Discretized splice coupling method
• Regions exchange displacements and velocities only (not forces).

• Each region sees material just like itself on the other side of the interface.

Sandia
National
Laboratories

Peridynamic nodes
• •

Coupling

interface

position

Displacement mapping

direction
0

Local (FD/FE) nodes
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Effect on waves

• Waves pass through between regions without obvious distortion.
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Adaptivity video
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Compare coupled method vs. single
methods individually

• Coupled local-PD results are close to PD alone.
• Crack path is more reasonable than with local alone (using element death).
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What does accuracy mean in coupling?
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• The local and nonlocal regions are dogs and cats, respectively.
• They don't like to talk to each other.
• There is no single right way to define the continuum coupling.
• So it is meaningless ask which continuum coupling method is the most

accurate.
• The best we can do seems to be:

• Require the coupled solution to converge to the local solution as 6 —> O.
• For fixed 6, require the discretized model to converge as Ax —> O.
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Discussion
• Good:

• All we do is interpolate displacements.
• No need to define forces between the regions.

• One region can be coarser than the other.
• Bad:

• The local and PD regions need to have the "same" material model.
• Otherwise the coupling fails to conserve momentum.

• Trick to ensure this consistency:
• Define the local material model by

a(F) = f T(F0(0 0 .

Sandia
National
Laboratories


