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2. Grid-forming virtual oscillator control (VOC) and droop control models

3. Positive sequence version of these models developed for PSLF

4. Simulation results of 50% VOC, 50% droop, vs. 100% synchronous on IEEE
39-bus system and MicroWECC system.
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Grid-following vs. grid-forming control
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• Two fundamental types of voltage sourced inverter controls

Grid Following Control (G Grid Forming Control (GFM)

Controls current and phase angle Controls voltage magnitude and frequency

Controls active & reactive power as well as Instantaneously balances loads without
fault currents

Cannot operate standalone

Cannot achieve 100% penetration

coordination controls

Can operate standalone

Can achieve 100% penetration
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Grid-following vs. grid-forming
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grid-following grid-forming
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Grid-forming controls model
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Grid-forming inverter control can:

1. autonomously generate terminal voltages cycling at a common synchronous speed,

2. regulate system voltage magnitudes, and

3. meet a power system demand in a shared manner without communication.
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Virtual oscillator control (VOC) and Droop grid-forming models
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• Overall, the droop model, defined by (14)—(18), has significant resemblance to the VOC model defined by
(8)—(13), albeit originating from different technologies.

• Both models have the ability to set parameters to allow for specific droop percentages (e.g. 5% frequency-
droop, 2% voltage-droop). Although the VOC is non-linear and therefore will not match exactly.

• Both models are in a way trying to mimic synchronous machine dynamics and can share load changes
throughout the system without communication.

Positive sequence VOC model

d 1 Q
V2) (8)

dt
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2Tv
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Positive sequence Droop model

d 1
VT V 14)(14)= — ( — — KQQ)

dtV T V

d
6 (15)= cob(w — we).dt

co = 1 — Kp(P — Pr) (16)
d 1

V igf) (17)Q = — (—Q —
dt Ts

d 
P V idf) (18)= —

1 
(—P +

dt TS

Brian J. Pierre, et al., "Bulk Power System Dynamics with Varying Levels of Synchronous Generators and Grid-Forming Power Inverters" 7



Test systems to realize grid-forming PV impacts
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L

MicroWECC system

• Scaled down version
of the North
American Western
Interconnection
(developed by
Montana Tech)

• Prone to a significant
frequency Nadir

• Prone to oscillations

• 32 buses
• 8 generators
• 9 loads
• 21 lines
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IEEE 39-bus system

• Built from part of the U.S.
eastern interconnection

• Has a "Lazy L" frequency
• Overall very stable

• 39 buses
• 10 generators
• 19 loads
• 34 lines

Test system modifications

• Governors for all generators set to 5% droop
• Modern exciters added with 2% voltage droop
• All generator buses split into two parallel generator buses with
50% PV and 50% conventional synchronous generation.

• PV generation set to either Droop model or VOC model with
parameters of 5% frequency-droop and 2% voltage-droop
(match synchronous generation for apples-to-apples
comparison).

• Updated load models on the IEEE 39-bus system to modern
models.
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Load trip event on IEEE 39-bus system
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• The settling frequency of the 50%
PV cases is effectively the same as
in the 100% synchronous case.

• This indicates that the droop
characteristic programmed into the
inverter-based generation controls
matches the setting of the
synchronous generator turbine
governors.

• The settling frequency in the VOC
case deviates slightly from the
droop case because its dynamics
do not precisely correspond to a
linear droop characteristic.
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• Note, the IEEE 39-bus case exhibits
the "Lazy If frequency response.
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Load trip event on IEEE 39-bus system

Sandia
National
Laboratories

• The voltage plot compares the voltage regulation achieved purely
using the automatic voltage regulator (AVR) and excitation system of
the synchronous machine with that achieved by the combined efforts
of the synchronous and inverter-based generator controls.

• The results indicate similar transients in all three cases, with perhaps
slightly better damping in the 50% PV cases.

• The change in power output in the PV cases is half that of the
synchronous case, because of the change in generation percentages
(100% sync to 50% sync)
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Generator trip event on MicroWECC system
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• The microWECC system was utilized due
to being prone to a large frequency Nadir

and oscillations.

• Assumption there is adequate headroom N 60

to increase PV output during the event
(PV is curtailed or energy storage exists).

59.95
• The settling frequency of the 50% PV

0-1
cases is effectively the same as in the
100% synchronous case as expected. ''11 59.9

(J)
• However, the PV cases show significantly

ciD 59.85less overshoot,

• this indicates that the addition of the 0
inverter-based controls has a stabilizing
effect on the frequency regulation mode
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Generator trip event on MicroWECC s stem
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• The cases with inverter-based generation controls
exhibit markedly better damping than the 100%
synchronous case for this contingency (note this is
somewhat sensitive to how the PSSs are modeled
in the system).

• The voltage at a synchronous generator bus
indicates better stability in the PV cases.
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Conclusions and future work
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• The results from these simulations indicate that under typical contingencies, the grid-
forming inverter models can have similar or better dynamic performance to traditional
100% synchronous generation if the parameters of the control schemes are chosen
appropriately.

• The results are promising, but future work needs to continue research in this area,
especially in fault analysis and protection for grid-forming inverters.
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