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Need to Use Analog to Efficiently mg.
Discard Precision

Sum 1024 8 bit weights X 8 bit inputs:
* Result has 26 bits of information!
« A 26 bit ADC would eliminate any analog advantage!

The sum can be done at full precision in analog, but a
lower precision approximation is needed when digitizing
 i.e. digitize only 8 bits or fewer

To get the highest 8 bits of information, digital would need
to keep a 26 bit intermediate result

Can design an ADC to choose
non uniform values to digitize
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Compare Analog Devices () e,

ReRAM

R. B. Jacobs-Gedrim et al., "Impact of
Linearity and Write Noise of Analog
Resistive Memory Devices in a Neural
Algorithm Accelerator,” IEEE
International Conference on Rebooting
Computing (ICRC) Washington, DC,
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lonic Floating-Gate Memory

S. Agarwal et al., "Using Floating Gate Memory E. J. Fuller et al., "Li-lon Synaptic Transistor for
to Train Ideal Accuracy Neural Networks," IEEE Low Power Analog Computing," Advanced
Journal of Exploratory Solid-State Computational Materials, vol. 29, no. 4, p. 1604310, 2017
Devices and Circuits, 2019

E. J. Fuller et al., under review




Accuracy

Three Terminal Devices Tend to

Have Higher Accuracy
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Compare Architectural Advantages @&z

120-430X Energy Advantage 2-34X Latency Advantage
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Used a commercial 14/16 nm PDK
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1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:

- Vector Matrix Multiply

- Matrix Vector Multiply

- Outer Product Update

***Requires 100 MQ on state devices




Compare Architectural Advantages: o
Vector Matrix Multiply

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
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All Analog Vector Matrix Multiply and Matrix Vector Multiply
have same energy and latency
« Entirely dominated by ADC, device properties irrelevant ’




Compare Architectural Advantages: o
Outer Product Update

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
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Outer Product Update is device dependent

« SONOS has slow write (~1 ms) and high write voltage (11V)

* |FG and ReRAM write energy negligible compared to VMM

* |FG has extra delay over ReRAM for access device to turn off 7




Compare Architectural Advantages: gz
Area

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage
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SONOS area cost IFG and ReRAM go over
transistors, area dominated
by ADC and DAC

reasonable, roughly

doubles area 3




Analog Devices Summary for Training @&

ReRAM

TiN
TaO, — 10 nm

TiN

SONOS
Silicon-Oxygen-

Nitrogen-Oxygen-Silicon

» Large Energy/Area/Latency -

advantage over digital

« Accuracy not good enough
« Back end of line compatible -

« Under commercial
development
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Moderate Energy/Area/Latency
advantages over digital

High Accuracy

Commercially available

Need to prove endurance and
device to device variability
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Large Energy/Area/Latency
advantages over digital
High Accuracy

Not clear how to integrate
Has retention challenges
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