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Need to Use Analog to Efficiently
Discard Precision
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Sum 1024 8 bit weights X 8 bit inputs:
• Result has 26 bits of information!
• A 26 bit ADC would eliminate any analog advantage!

The sum can be done at full precision in analog, but a
lower precision approximation is needed when digitizing
• i.e. digitize only 8 bits or fewer

To get the highest 8 bits of information, digital would need
to keep a 26 bit intermediate result

Can design an ADC to choose
non uniform values to digitize

Analog Sum
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Compare Analog Devices
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R. B. Jacobs-Gedrim et al., "Impact of
Linearity and Write Noise of Analog
Resistive Memory Devices in a Neural
Algorithm Accelerator," IEEE
International Conference on Rebooting
Computing (ICRC) Washington, DC,
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Ionic Floating-Gate Memory

S. Agarwal et al. , "Using Floating Gate Memory
to Train Ideal Accuracy Neural Networks," IEEE
Journal of Exploratory Solid-State Computational
Devices and Circuits, 2019

E. J. Fuller et al., "Li-Ion Synaptic Transistor for
Low Power Analog Computing," Advanced
Materials, vol. 29, no. 4, p. 1604310, 2017
E. J. Fuller et al., under review
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Three Terminal Devices Tend to

Have Higher Accuracy
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Compare Architectural Advantages

120-430X Energy Advantage 2-34X Latency Advantage
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5-11X Area Advantage
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1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices



Compare Architectural Advantages:
Vector Matrix Multiply

120-430X Energy Advantage 2-34X Latency Advantage
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All Analog Vector Matrix Multiply and Matrix Vector Multiply
have same energy and latency
• Entirely dominated by ADC, device properties irrelevant
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Compare Architectural Advantages:
Outer Product Update

120-430X Energy Advantage 2-34X Latency Advantage
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Outer Product Update is device dependent
• SONOS has slow write (-1 ms) and high write voltage (11V)
• IFG and ReRAM write energy negligible compared to VMM
• IFG has extra delay over ReRAM for access device to turn off 7



Compare Architectural Advantages:
Area

120-430X Energy Advantage 2-34X Latency Advantage
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IFG and ReRAM go over
transistors, area dominated
by ADC and DAC
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Analog Devices Summary for Training
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• Large Energy/Area/Latency • Moderate Energy/Area/Latency • Large Energy/Area/Latency
advantage over digital advantages over digital advantages over digital

• Accuracy not good enough • High Accuracy • High Accuracy
• Back end of line compatible • Commercially available • Not clear how to integrate
• Under commercial •

development
Need to prove endurance and
device to device variability

• Has retention challenges
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