
Implementation of Temporal Parallelization for Rapid Quasi-Static
Time-Series (QSTS) Simulations

Joseph A. Azzolini1, Matthew J. Reno% Davis Montenegro2

1 Sandia National Laboratories, Albuquerque, NM, 87185, USA
2 Electric Power Research Institute, Knoxville, TN, 37932, USA

Abstract — Quasi-static time-series (QSTS) analysis of
distribution systems can provide critical information about the
potential impacts of high penetrations of distributed and
renewable resources, like solar photovoltaic systems. However,
running high-resolution yearlong QSTS simulations of large
distribution feeders can be prohibitively burdensome due to long
computation times. Temporal parallelization of QSTS simulations
is one possible solution to overcome this obstacle. QSTS
simulations can be divided into multiple sections, e.g. into four
equal parts of the year, and solved simultaneously with parallel
computing. The challenge is that each time the simulation is
divided, error is introduced. This paper presents various
initialization methods for reducing the error associated with
temporal parallelization of QSTS simulations and characterizes
performance across multiple distribution circuits and several
different computers with varying architectures.

Index Terms — distribution system modeling, quasi-static time-
series, PV grid integration, parallel processing.

I. INTRODUCTION

Quasi-static time-series (QSTS) simulation is a powerful
study tool for modern distribution system analysis. A QSTS
simulation solves a series of sequential steady-state power-flow
solutions where the converged state of each iteration serves as
the initial state of the following iteration [1]. QSTS simulations
are particularly useful when analyzing circuits with new smart
grid technologies and/or high penetrations of distributed and
renewable resources due to their ability to model circuit
elements with discrete controls. Since the simulation is run as a
time-series, the time-varying parameters like load and
photovoltaic (PV) generation, as well as the time-dependent
states of circuit elements, like regulator tap positions, can be
captured for analysis. Time-series analysis of distribution
circuits is becoming increasingly important as more distributed
energy resources (DER) like residential rooftop PV, energy
storage, and smart inverters are connected to the grid.
QSTS simulations have many benefits but can be

prohibitively burdensome for large and complex circuits due to
long computation times. To capture all distribution system
analyses accurately, a QSTS simulation with a time horizon of
one year and a time step resolution of 5 seconds or less is
recommended [2]. This simulation requires millions of power-
flow solutions to be solved, incurring long computation times.
To address this challenge, a number of different methods have
been explored in the literature: circuit reduction can be
implemented to reduce the number of buses [3], machine
learning can be used in partial-year simulations to predict the

results for full yearlong simulations [4], the circuit can be
divided into smaller sections and solved concurrently across
multiple processors using Diakoptics [5], and the number of
power flows can be reduced using a number of different
algorithms [6]—[9].
Temporal parallelization of QSTS simulations is another

promising method for reducing long computational times by
dividing the total time horizon of the simulation into different
sections and solving those sections simultaneously on multiple
processors of a single computer. Fig. 1 shows a visual
representation of a QSTS simulation divided into four equal
parts to be solved concurrently on four separate processors. In
this case, each section of the simulation is performed
independently and in parallel to one another.

tstart1 tstart2 tstart3 tstart4

JuI Aug Sep Oct Nov Dec
Time 2018

Fig. 1. Yearly QSTS simulation with four temporal divisions.

Dividing a single simulation into multiple sections introduces
discontinuities into the simulation—specifically at the
beginning of each temporal division. The initial conditions at
these temporal divisions are not known, thus error is
introduced. For example, in Fig. 1, the initial state at "tstart2",
"tstart3", and "tstarta" are unknown. Since each power-flow
solution may have more than one valid solution (especially
when the circuit has multiple controllable devices), the
calculated states may differ from the actual base-case states.
These differences can cause error to persist through the
simulation because each converged state serves as the initial
state for the following power flow solution. As more temporal
divisions are introduced, more unknown states are introduced
and the likelihood of error increases.

Finding the correct initial state for each divided section is
critical for reducing these errors. In [10], a Monte-Carlo based
approach was used to set the initial state of each section and
reduce the overall parallelization error. Another method to

Jan Feb Mar Apr May Jun

SAND2019-6851C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

reduce parallelization error is by running a short-term QSTS
simulation to initialize each section, as shown in Fig. 2. In this
case, the difference between "tstart2" and "tendl" represents the
initialization window. In one study, the authors found that
longer initialization times (24 hours compared to 90 minutes)
had performed better for error reduction [11]. The down side is
that longer initialization windows take longer to compute,
reducing the benefits of temporal parallelization.

Jan Feb

I tstart2 I tstart3 tstart4

Apr May Jun Jul Aug

Time 2018

Fig. 2. Yearly QSTS simulation with six temporal divisions and
initialization whidows.

tstart5 start6

Mar Sep Oct Nov Dec

This work focuses on the implementation of temporal
parallelization, across multiple test feeders and computers with
different characteristics, to quantify the benefits and limitations
of this approach for rapid QSTS simulations. The contributions
of this paper include:
• Characterization of error and speed improvement for

temporally parallelized QSTS simulations on multiple
distribution feeders

• Analysis and verification of speed and accuracy across
several computers

• Comparison of initialization strategies for reducing error
• Test circuits and temporal parallelization code are open

source and publicly available to download [12]
The paper is organized as follows: Section II provides details

of how temporal parallelization is implemented in MATLAB
and OpenDSS, Section III describes the experimental
methodology of the paper, Section IV presents the results for
parallelization error, Section V presents the results for speed
improvement, and Section VI concludes the paper.

II. IMPLEMENTATION OF TEMPORAL PARALLELIZATION

The temporally parallelized QSTS simulations on all
computers were set up using the GridPV toolbox [16] in
MATLAB R2018b and were run in OpenDSS version 8.5.9.1
(64-bit build) [17]. This version of OpenDSS has built-in
capability for running parallel QSTS simulations, based on an
actor model [18]. Each actor created by OpenDSS has its own
thread and can be individually assigned a CPU to run on.

Fig. 3 shows an overview of how to run a QSTS simulation
using the parallel processing functions in OpenDS S. Additional
information regarding these functions can be found in [19].
First, a circuit must be compiled that is set up for QSTS

simulations, i.e. it contains time-series profiles for any loads or
generators in the model. After a circuit is compiled, the clone
function can be used to copy this model onto additional actors.
Each actor is essentially another instance of OpenDSS, running
on a separate processor. The actors are centrally controlled via
the parallelization interface, where commands can be sent to a
specific actor (e.g. by setting ActiveActor=4) or to all actors at
once by setting ActiveActor=*. Once the actors have been
created, monitors can be added to log the time-series data of
various circuit components across all actors. If the monitor's
name is the same in every actor, the results can be exported into
a single file by setting ConcatenateReports=true.
Each actor can be individually initialized and set up for a

QSTS simulation (several initialization strategies are discussed
in Section IV). It is best practice to set the ActiveActor=1 before
issuing the solveAll command to ensure proper execution.
While the actors are solving their assigned portions of the QSTS
simulation, their progress can be tracked using the
ActorProgress command. Upon completion of the simulation,
the ActorStatus of each actor returns a 1, letting the user know
that those actors are ready to accept new commands, e.g.
exporting the data from the monitors for analysis.

(Start

4

input data

Circuit model

Time-series data

Time step

Time horizon

of actors (n)

_1 Compile

circuit

+
"Clone"

circuit onto

n actors

+
Add monitors

to each actor

Initialize

each actor
-c-

"solveAll"

actors

End

 1

Check

actor status

Export & analyze

monitor data

1—

Fig. 3. Flowchart for implementing temporal parallelization for
QSTS simulations in OpenDSS.

In general, the performance of parallel computing does not
scale linearly with the number of parallel divisions. The
performance can be affected by various factors such as the need
to share certain resources, e.g. memory, or if the application
itself contains a serial component that cannot be divided across
multiple processors. One way to capture the upper bounds of
expected system performance is to use an abstract analytic
method like Amdahl's law [20], shown in (1). This law states
that Times Faster scales up based on the number of parallel
divisions, N, and the serial component of the application, S.

Times Faster =
S+(l-S)

N

1
(1)

10

9

8

7

6

5

4

3

2

1
2

— — —Theoretical Max

—2.5% serial

— 5.0% serial

—10.0% serial

—20.0% serial

•
•

Fig. 4 gives some examples of Amdahl's law for processes
with varying percentages of serial components as the number
of parallel divisions being used increases. The dashed blue line
represents the theoretical maximum speed improvement of
temporal parallelization, i.e. if the QSTS simulation was
perfectly parallelizable and no computational resources needed
to be shared. This figure shows that parallelization performs
best when the percent serial component is as small as possible,
and that there is a diminishing marginal improvement with each
additional parallel division.

T
i
m
e
s
 F
as

te
r

3 4 5 6 7 8
Number of Parallel Divisions

Fig. 4. Expected speed improvements with increasing number of
parallel divisions, as predicted by Amdahl's law (1) for several values
of S.

III. EXPERIMENTAL METHODOLOGY

9 10

To accurately quantify the performance of temporal
parallelization, QSTS simulations were run on four different
test circuits. Each of the four test circuits have been individually
modified for QSTS simulations, i.e. adding time-series profiles
for loads and PV systems, and are publicly available [12]. The
simulations for one of the test circuits were then repeated across
two other computers with differing characteristics for
comparison and verification. The following subsections
provide more detail on each of the test circuits, computers used
for the simulations, and evaluation criteria.

A. Test Circuits

The first test circuit used, Feeder C01, is a 21.7 km-long
circuit based on an actual utility distribution feeder [13]. This
circuit has 2969 buses (5469 nodes), 9 controllable elements
(switching capacitor banks and step voltage regulators), 144 PV
systems (3.7 MW total), and a peak load of 6 MW. Fig. 5 shows
a circuit diagram of the distribution feeder, with various circuit
elements highlighted. The black lines represent 3-phase
distribution lines and the gray lines represent the 1 or 2-phase
secondary system. Each load is assigned a 1-second power
injection profile by customer class (residential or commercial)
generated from measurements of the feeder under
consideration. Each PV system is grouped into one of four
categories based on its geographic location and assigned a

unique 1-second power injection profile based on solar
irradiance data. See [7] for more details on the circuit.

Substation

PV System

LTC/VREG

Switching
Capacitor

Fig. 5. Circuit plot of Feeder CO1 (and Feeder C01-VV) marked
with locations of PV systems, voltage regulators, and switching
capacitors.

The second test circuit, Feeder C01-VV, is the same as
Feeder CO1 except the two centralized PV systems (PV_Cl
and PV_C2 in Fig. 5) were modeled with Volt-Var functionality
according to IEEE 1547 [1]. These two PV systems are 3-phase,
centralized installations with their own interconnection
transformers.

*

*
Substation

PV System

• LTC/VREG

•
Fixed
Capacitor

A Switching
Capacitor

Fig. 6. Circuit plot of the modified EPRI Feeder J1 circuit.

The third circuit, shown in Fig. 6, is a modified version of the
EPRI Feeder J1 test circuit [14]. This circuit, also based on
actual utility distribution feeder, has 3433 buses, 7 PV systems
(1.77 MW total) each with their own unique time-series profile,
12 controllable elements, and a peak load of 6.3 MW.

* Substation

* PV System

• LTCNREG

• Fixed Capacitor

Fig. 7. Circuit plot of modified IEEE123 circuit.

The last of the four test circuits is a modified version of the
IEEE 123-bus test feeder [15]. This circuit is unbalanced, with
loads on each phase having their own unique time-series
profiles. The IEEE 123-bus network, shown in Fig. 7, has a 4.16
kV operating voltage, 7 step voltage regulators, one 1.8 MW
PV system with a constant power factor of -0.98, and a peak
load of 3.49 MW.

B. Computers Used for Simulations

To fully characterize and verify the speed improvements of
temporal parallelization, simulations were run on three different
computers. Table I shows a summary of key characteristics of
the three computers used for parallelized QSTS simulations. All
three computers are also equipped with hyperthreading
technology, meaning that each core contains two logical
processors (CPUs) and each CPU can support its own actor in
OpenDSS. To avoid having the computers freeze up during
simulation, all CPUs should not be used at once for an
OpenDSS simulation [19]. Thus, the maximum number of
actors each computer can support can be found using (2).

Maximum Actors = (2 * Cores) - 1 (2)

It should noted that Computer C has two sockets each with
20 cores for a total of 40 available cores. However, some of the
libraries being used are unable to recognize and simultaneously
communicate with both sockets. Hence, only 20 cores of
Computer C are used for experimentation.

TABLE I. SUMMARY OF COMPUTER CHARACTERISTICS

Name CPU
Base
Speed

Memory
of
Cores

A
Intelt1 CoreTM

i7-4790
3.60 GHz 16 GB 4

B
Intel® Xeon®
E5-2687W v3

2.10 GHz 32 GB 10

C
Intel® Xeon®
Gold 6138

2.00 GHz 96 GB 40*

*Due to some library limitations, only half of the cores are available
for experimentation

C. Evaluation Criteria

Each temporally parallelized QSTS simulation is evaluated
on its speed and accuracy by comparing the results to a base-
case simulation of the same circuit on the same computer. The
base case simulation for each circuit had a time horizon of one
year and used a time step resolution of 1-second, for a total of
31,536,000 power flow solutions. By using a 1-second time step
resolution (the finest resolution allowed for QSTS simulations
[1]), any errors in parallelized simulations can be directly
attributed to the parallelization process.
The parallelization errors are demonstrated by monitoring the

voltages of two different nodes on the circuit (one for over-
voltages and one for under-voltages), the total number of yearly
tap position changes of the step voltage regulators, and total
number of switching events from the switching capacitors. The
monitored nodes were chosen after analyzing the base-case

results to see which nodes experienced the highest and lowest
voltages throughout the year.

Acceptable error thresholds for the criteria listed above have
been set based on feedback from distribution system engineers
on their expectations of the performance of QSTS simulations
[9]. Since each circuit has multiple step voltage regulators and
capacitors, root-mean-square error (RMSE) is used to
encapsulate the errors of all devices into a single number. In (3),
n represents the number measurement points, such as the
number of regulators or capacitors, P represents the
measurement for the parallelized simulation and O represents
the base-case measurement. For example, when calculating
RMSE for tap position change, n would be the number of
regulators in the circuit, P, would be the tap changes of the irh

regulator in the parallelized simulation, and 0, would be the
base-case tap changes for the regulator. A similar equation
(4) can be used to show RMSE in terms of percent error.

iRMSE - yl'=1(13ii-Oi)27

RMSE %
fit=i(rio—(i)i) x100)

n

2

(3)

(4)

To quantify speed improvements, base-case simulations were
run on a single core using a time horizon of one year and a time
step resolution of 1 second. For parallelized simulations, Times
Faster was calculated using (5). Even though each actor is
solving an equal amount of power flows, it is not guaranteed
that they take the same amount of time. Therefore, the slowest
actor is used to calculate Times Faster in (5).

Times Faster =
SimulationTimebase

max(SimulationTimeactors)

IV. RESULTS FOR PARALLELIZATION ERROR

(5)

The following subsections highlight the error results of the
temporally parallelized QSTS simulations on multiple test
circuits. First, in Subsection A, several initialization strategies
were investigated for their ability to reduce parallelization
error. Then, one strategy was selected and used for the
remainder of the simulations described in Subsection B.

A. Initialization Strategies for Reducing Error

Several initialization strategies were investigated to reduce
the error associated with parallelization. The first method
involves a single power-flow solution using the "static" control
mode before changing to "time' mode for the remainder of the
QSTS simulation. In "time" mode, control actions are executed
when the time for the pending action is reached or surpassed.
This mode reflects how controllable devices behave in actual
distribution systems. In "static" mode, control actions are
executed in the order of shortest time to act until all control
actions are cleared from the control queue [17]. This mode is

useful in circuits with multiple controllable devices like voltage
regulators and switching capacitors as it allows these devices to
settle to a converged state without advancing time before the
rest of the simulation begins. The initialization time of this
method is negligible since it only requires a single power flow
solution.
The next initialization method utilizes the static solution and

a one-day long initialization window. First, the actor rewinds to
the day before it is tasked to solve. For example, if the actor was
assigned to start on Day 100, it first rewinds to Day 99, solve
one static power-flow, then solve the remainder of Day 99 at a
5-second time step resolution in "time" mode until it reaches
Day 100. The 5-second time step resolution was chosen to
speed up the initialization while remaining less than the shortest
delay time of any controllable element (30 seconds in this case).
This initialization method is more computationally intensive
than the first, as it requires 17,280 initialization power-flow
solutions.
The final initialization method is conceptually the same as

the previous one, except that it rewinds one week instead of one
day and uses a 30-second time step resolution. This method is
the most computationally intensive of the proposed methods, as
it requires 20,160 initialization power-flow solutions.
The results of each of the proposed methods are compared to

each other and the case without any initialization in Fig. 8. This
figure shows that the voltage regulator error and switching
capacitor error both increase with the number of parallel actors
being used, as expected. However, even in the worst case
considered here, the error magnitudes are still well within the
acceptable thresholds (10% for regulator RMSE and 20% for
capacitor RMSE [9]). Thus, the "static" initialization method
was chosen for all subsequent simulations since it reduces the
error without adding any computational time.

— 2.0

ow 1.5

2
ce to
o

0.5
a)

0.0

— 5.0

uj 4.0
ri)
2 3 0
'

2.0

a to
ct,
0 0.0

• No Initialization
• Static
• 1 Day
• 1 Week

10 15

Number of Parallel Actors

20

• No Initialization
• Static
• 1 Day
• 1 Week

5 10 15

Number of Parallel Actors
Fig. 8. Feeder CO1 RMSE of voltage regulator tap position changes
(top) and RMSE of capacitor switches (bottom) of the proposed
initialization strategies with increasing number of parallel actors on
Computer C.

20

B. Parallelization Error of Each Test Circuit

As opposed to snapshot analyses, QSTS simulations can
capture the time-dependent states of the systems that can be
used to study important characteristics of modern distribution
circuits like the effects of daily changes in load and PV output
and the duration of extreme conditions on the circuit. One key
metric provided by QSTS simulations is the number of tap
position changes throughout the year of step voltage regulators.
These devices adjust their tap position to maintain voltages
within certain predetermined limits. As variability increases on
a circuit due to high penetrations of DER, voltage regulators
tend to operate more frequently which can affect their lifetime.
Thus, the ability to accurately characterize their operation
throughout the year is critical. Fig. 9 shows the regulator tap
position changes RMSE for each of the test circuits with
increasing levels of parallelization. While the errors do tend to
increase with the number of actors, overall the error is well
within the acceptable limits (represented by the horizontal
dashed black line).

R
e
g
u
l
a
t
o
r
 R
M
S
E

10

4

2

• FEEDER CO1
Ei FEEDER C01-VV
• IEEE 123

J1

 •
2 3 4 5 6 7 8 9 10

Number of Parallel Actors
Fig. 9. Regulator tap position change RMSE with increasing
number of actors (Computer B).

20

❑ FEEDER CO1
❑ FEEDER C01-VV

❑ J1

2 3 4 5 6 7 8
Number of Parallel Actors

Fig. 10. Switching capacitor state change RMSE with
increasing number of actors (Computer B).

Similar to the step voltage regulators, switching capacitors
are also used help maintain voltages along a feeder and their
number of operations can increase with higher variability on the
circuit as well. Fig. 10 shows the switching capacitor state
change RMSE of three different test circuits with increasing

9 10

levels of parallelization (the IEEE 123 circuit does not contain
any switching capacitors). Again, the errors are all within the
20% limit. It should be noted that the switching capacitors in
the J1 test circuit have fewer operations than those in the other
test circuits, causing this metric to be more sensitive to the
RMSE % calculation in (4).

Voltage violations are defined by the amount of time the
voltage on a distribution circuit spends outside its
predetermined limits, such as those set forth in ANSI C84.1. To
capture this behavior, monitors were added to two different
nodes in the circuit to capture over-voltages and under-
voltages. The error metric for voltage violations (measured in
hours) was calculated by taking the difference between the
parallelized simulations and the base-case for each of the test
circuits. Fig. 11 shows the voltage violation error results for
each of the test circuits with increasing levels of parallelization.
While the errors are all within the limit of 24 hours, two of the
test circuits experienced a sharp increase from 8 to 10 actors.
Further investigation would be needed to tell if these errors
would continue to grow with additional actors.
Along with the duration of extreme voltages, the magnitude

of those voltages was also considered. The RMSE for the yearly
maximum and minimum voltages on the feeder were each
accurately captured by all the parallelized simulations, as
shown in Fig. 12.

ca

o
I 20.0

o

& 5.0

T
> 0.0

2 3 4 5 6 7 8

Number of Parallel Actors
Fig. 11. Voltage violation error with increasing number of actors
(Computer B).

x10-3

cu 3.0

2.0
x

2 1.0

• 0.0

9 10

❑ FEEDER CO1
❑ FEEDER C01-VV
1:1 IEEE 123

❑ J1

2 3 4 5 6 7 8

Number of Parallel Actors
Fig. 12. Minimum and maximum voltage RMSE with increasing
number of actors (Computer B).

9 10

V. RESULTS FOR SPEED IMPROVEMENT

There are a variety of factors that influence the speed
improvements of parallelized QSTS simulations including the
size of the circuit, computing resources available, thread
allocation, and actor solution times. These factors will be
discussed in detail in the following subsections.

A. Actor Solution Times

Even though each actor in a parallelized QSTS simulation is
solving the same number of power flows, the solution time per
power flow is not constant. Each power flow may require a
varying number of iterations to converge on a solution
depending on circuit conditions or may need to account for
actions taken by controllable devices. An example of this
behavior is shown in Fig. 13 where Actor 3 finished more than
20 minutes after Actor 10. Thus, the computation time of the
slowest actor is used to calculate Times Faster in (5). Overall,
this phenomenon further reduces the performance predictions
from Amdahl's law.

200

a)
E 100

50

Mir

0 2 4 6 8 10

Actor Number
Fig. 13. Comparison of actor solution times for Feeder CO1 on
Computer B with 10 actors.

250

200
ci)
3
c
E 150

E

c 100
o

o
cn 50

0
0 2 4 6 8

Actor Number
Fig. 14. Comparison of actor solution times for Feeder CO1 on
Computer B with 11 actors.

10 12

Another factor that can impact actor solution time is thread
allocation. Since every actor is running on its own thread, the
ideal situation is to have each thread running on its own core,
as in Fig. 13. Since Computer B has 10 cores and the simulation
had 10 actors, each actor in was assigned to a different core.
According to (2), Computer B can support up to 19 actors. So,
for any parallelized simulations on Computer B with more than
10 actors, at least one of the cores will be supporting two
threads instead of one.

Fig. 14 shows the solution times of each of the 11 actors. This
figure shows that Actor 1 and Actor 11 were assigned to run on
the same core. As expected, these two actors had the longest
solution times; Actor 1 finished more than an hour after the
Actor 10 and the total speed improvement was worse with 11
actors than it was for 10 actors.
To further quantify the effects of thread allocation, a batch of

simulations were run in which no actor had its own core. The
results from these simulations are shown in Fig. 15. The results
of each case were also individually fit to Amdahl's law (1). The
fit coefficient for each case, i.e. the percent serial component,
are shown in the legend. Fig. 15 reveals that the benefits of
having additional actors eventually outweigh the cost of the
increased serial component when using two threads per core.

20

0

— — —Theoretical Max
• 2 Actors per Core

7.47x Faster (10.57% Serial)

• 1 Actor per Core
6.54x Faster (6.52% Serial)

• •
• •

2 4 6 8 10 12 14

Number of Parallel Actors

Fig. 15. Effects of thread allocation on speed improvement using
Computer B, with results fit to Amdahl's law (1).

B. Circuit Results

16 18

The speed improvements of each test circuit under various
levels of parallelization are shown in Fig. 16. The results of
each circuit were individually fit to Amdahl's law (1). The fit
coefficient for each circuit and the 12.2 value for the fit are
summarized in Table II. These results show that speed
improvements were not consistent across the various test
circuits and that parallelization was more beneficial for the
larger circuits. In general, the power flow solution time tends to
increase with the number of buses in the circuit model, i.e. a
single power flow solution takes longer for Feeder CO1 than it
does for the IEEE 123 circuit. Therefore, the serial component
of QSTS simulations, such as loading the time-series profile
values from memory, plays a more dominant role in smaller
circuits. This behavior is evident in Table II as the IEEE 123
test circuit had a 9.40% serial component compared to the
6.52% serial component in Feeder CO1.

T
i
m
e
s
 F
a
s
t
e
r

10

9

8

7

6

5

4

3

2

1

— — —Theoretical Max
• FEEDERCOI

❑ FEEDERC01-VV
■ IEEE123BUS
❑ J1

2 3 4 6 8

Number of Parallel Actors

Fig. 16. Speed improvements of all circuits at various levels of
parallelization simulated on Computer B with each fit to (1).

TABLE II. DETAILED RESULTS FROM FIG. 16

10

Test
Circuit

Times Faster
(10 cores)

Amdahl
Coefficient

It'
Value

Feeder CO1 6.542x 6.52% serial 0.9887

Feeder CO1-VV 6.208x 7.09% serial 0.9928

Feeder J1 5.744x 8.48% serial 0.9896

IEEE 123 5.370x 9.40% serial 0.9974

C. Computer Assessment

Feeder CO1 was chosen as the test circuit to be used across
the all three computers. The results from these simulations are
shown in Fig. 17 and Table III. Since the results from Computer
B and Computer C are very similar, it is probable that Computer
A had other hardware limitations, like memory or cache size,
that affected its performance.

16

14

12

10

co
LL

8
to

E 6

4

2

— — — Theoretical Max
❑ Computer C
❑ Computer B
• Computer A

•
•

•

0 "
2 3 4 6 8 10 12 14 16

Number of Parallel Actors

Fig. 17. Speed improvements of Feeder CO1 at various levels of
parallelization simulated on all three computers, fit to (1).

TABLE III. DETAILED RESULTS FROM FIG. 17

Computer
Times
Faster

Amdahl
Coefficient

R2

Value

A 2.633x (4 cores) 17.84% serial 0.9894

B 6.542x (10 cores) 6.52% serial 0.9887

C 8.156x (16 cores) 6.65% serial 0.9975

VI. CONCLUSION

QSTS simulations are an important study tool for distribution

system analysis, but they can be burdensome with long

computation times. This paper explored the method of temporal

parallelization as a possible solution to speed up the

simulations. However, since QSTS simulations require millions

of power flow solutions to be computed sequentially due to

their time-dependent nature, parallelizing this process can

introduce errors that persist through the simulation.

First, several initialization strategies with varying

computational requirements were explored to reduce this error.

It was found that solving each divided section using a "static"

control mode for one single power flow was able to reduce the

parallelization error without adding any significant

computation time. This initialization strategy was used for all

the remaining parallelized QSTS simulations.

Four different test circuits and three different computers were

then used to quantify the speed improvements and accuracy of

temporal parallelization. These test circuits and the MATLAB

code used to implement temporal parallelization are publicly

available [12]. The results from each test circuit were fit to

Amdahl's law to characterize their speed improvements. As

expected, the larger circuits experienced a greater benefit from

parallelization. Temporally parallelized QSTS simulations

were shown to have a serial component of at least 6.52%

resulting in a speed improvement of up to 8.156x faster when

using 16 cores. The parallelized results were also subject to

several error metrics. In every case, the parallelization error was

found to be within acceptable limits. Based on these results,

temporal parallelization has shown to be a viable option for

rapid QSTS simulations.

REFERENCES

IEEE P1547.7/D11, "IEEE Guide for Conducting
Distribution Impact Studies for Distributed Resource
Interconnection," 2013.
M. J. Reno, J. Deboever, and B. Mather, "Motivation and
requirements for quasi-static time series (QSTS) for
distribution system analysis," in IEEE Power and Energy
Society General Meeting, 2017, pp. 1-5.
Z. K. Pecenak, V. R. Disfani, M. J. Reno, and J. Kleissl,
"Multiphase Distribution Feeder Reduction," IEEE Trans.
Power Syst., vol. 33, no. 2, pp. 1320-1328, 2018.
L. Blakely, M. J. Reno, and R. J. Broderick, "Decision Tree
Ensemble Machine Learning for Rapid QSTS Simulations,"
in 2018 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), 2018.
D. Montenegro, G. A. Ramos, and S. Bacha, "A-Diakoptics
for the Multicore Sequential-Time Simulation of Microgrids
Within Large Distribution Systems," IEEE Trans. Smart
Grid, vol. 8, no. 3, pp. 1211-1219, 2017.
D. Montenegro, J. Gonzalez, and R. Dugan, "Multi-rate
control mode for maintaining fidelity in Quasi-Static-Time-
Simulations," 2017 3rd IEEE Work. Power Electron. Power
Qual. Appl. PEPQA 2017 - Proc., 2017.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. U. Qureshi, S. Grijalva, M. J. Reno, J. Deboever, X.
Zhang, and R. Broderick, "A Fast Scalable Quasi-Static Time
Series Analysis Method for PV Impact Studies using Linear
Sensitivity Model," IEEE Trans. Sustain. Energy, vol. 10, no.
1, pp. 301-310, 2018.
J. Deboever, S. Grijalva, M. J. Reno, and R. J. Broderick,
"Fast Quasi-Static Time-Series (QSTS) for yearlong PV
impact studies using vector quantization," Sol. Energy, vol.
159, no. June 2017, pp. 538-547, 2018.
M. J. Reno, J. A. Azzolini, and B. Mather, "Variable Time-
Step Implementation for Rapid Quasi-Static Time-Series (
QSTS) Simulations of Distributed PV," in 2018 IEEE 7th
World Conference on Photovoltaic Energy Conversion
(WCPEC), 2018, pp. 1626-1631.
A. Latif and B. Mather, "Monte carlo based method for
parallelizing quasi-static time-series power system
simulations," 2018 Int. Conf. Probabilistic Methods Appl. to
Power Syst. PMAPS 2018 - Proc., pp. 1-6, 2018.
R. Hunsberger and B. Mather, "Temporal Decomposition of
a Distribution System Quasi-Static Time-Series Simulation,"
in 2017 IEEE Power & Energy Society General Meeting,
2017, pp. 5-9.
"Quasi-Static Time-Series (QSTS)," PVPerformance
Modeling Collaborative, 2019. [Online]. Available:
https://pvpmc.sandia.gov/pv-research/quasi-static-time-
series-qsts/.
M. J. Reno, K. Coogan, J. Seuss, and R. J. Broderick, "Novel
Methods to Determine Feeder Locational PV Hosting
Capacity and PV Impact Signatures," Sandia National
Laboratories, vol. SAND2017-4, 2016.
"Distributed PV Monitoring and Feeder Analysis," Electric
Power Research Institute, 2019. [Online]. Available:
https://dpv.epri.com/feeder,j.html. [Accessed: 06 -Mar-
2019] .
K. P. Schneider et al., " Analytic Considerations and Design
Basis for the IEEE Distribution Test Feeders," IEEE Trans.
Power Syst., vol. 33, no. 3, pp. 3181-3188, 2018.
M. J. Reno and K. Coogan, "Grid Integrated Distributed PV (
GridPV)," Sandia National Laboratories, vol. SAND20 13,
no. August, pp. 1-134, 2013.
R. C. Dugan, "The Open Distribution System Simulator (
OpenDSS)," Electr. Power Res. Institute, Inc., no.
November, pp. 1-177, 2012.
D. Montenegro, R. C. Dugan, and M. J. Reno, "Open Source
Tools for High Performance Quasi-Static Time-Series
Simulation Using Parallel Processing," IEEE Photovolt.
Spec. Conf , pp. 3055-3060, 2017.
D. Montenegro and R. C. Dugan, "User Instructions for
Parallel Processing," 2018. [Online]. Available:
https ://sourceforge.net/proj ects/electricdss/files/. [Accessed:
06-Dec-2019].
G. M. Amdahl, "Validity of the single processor approach to
achieving large scale computing capabilities," in Proceedings
of Am. Federation of Information Processing Societies Conf,
1967, pp. 483-485.

This research was supported by the DOE SunShot Initiative, under agreement
30691. Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA0003525.

