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NETWORK MODELS
SIMULATION VS EMULATION

Why are we interested in network models?

P. Network operators: understand the potential impacts of changes before implementing them

P. Network designers: understand trade-offs before network creation

Network modeling refers to:

► Simulation: similar to their physics-modeling counterparts and they are based on a deep
understanding of the underlying processes to simulate network components and interactions
in software

► Emulation: run the real software on virtualized hardware thus it is able to capture unknown
or not well-understood behaviors

A crude fluid dynamics analogy: Let's consider a straight wing flying...

P. ...at nearly 0° angle-of-attach with laminar attached flow -4- physics well-known thin
airfoil theory (simulation)

P. ...at high angle-of-attach with turbulent detached flow —> physics poorly understood
Large Eddy Simulations (emulation)

(), Emulation has a higher-degree of realism, but this comes at an higher computational cost
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NETWORK MODELS
SIMULATION VS EMULATION: STRENGTHS AND DIFFERENCES

Simulation

✓ Fast to develop

✓ Run faster than real-time since they control the clock

✓ Easy to run in parallel because they are neither time-dependent or reliant on virtualized
hardware (which might be limited)

X Unable to capture emergent behaviors

Emulation

✓ Run the real software therefore closely resembles a physical testbed

X Requires more hardware and therefore the number of concurrent evaluations are limited

Emulytics

► Combine Emulation and analytics
► Includes hardware in the loop, simulation, and emulation (and human in the loop)

LIVE UVE VIRTUAL CONSTRUCTIVE

We focus here only on the
virtual layer

Figure courtesy of David Fritz, SAND2018-3927
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NETWORK MODELS
WHY NETWORK MODELING AT SANDIA? (COURTESY OF DAVID FRITZ, SAND2018-39271)

► DevOps: Ensure operation of new hardware, software, services in high-consequence
environments. Predictive analysis to detect malfunctions, misconfigurations and malicious
consequences

► Malware: Understanding of malware through pseudo-in situ execution

► ICS/SCADA: Under uncertain threats, what are the best countermeasures for my
IT-connected ICS systems? Can we detect attacks? Can we assess resiliency of the
IT-controls over the entire power grids?

► Nuclear Weapons: Can we assure Communication, Command and Control regardless of
network state and threats?

For all these applications we operate in an extreme uncertain environment/scenario and we need to
quantify the probability of obtain certain desired responses by our systems

Uncertainty Quantification

lhttp://minimega.org/presentations/gt_2018.slide#7
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Multifidelity Uncertainty Quantification
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UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION — WHY SAMPLING METHODS?

UQ context at a glance:

P. High-dimensionality, non-linearity and bifurcations/discontinuities

► Large set of modeling choices available (network topology, operative conditions, etc.)

Natural candidate:

► Sampling-based (MC-like) approaches because they are non-intrusive, robust and flexible...

► Drawback: Slow convergence O(N-112) —r many realizations to build reliable statistics

Goal of MF UQ:

Reducing the computational cost of obtaining MC reliable statistics by combining several models

Pivotal idea:

► Simplified (low-fidelity) models are inaccurate but computationally inexpensive
low-variance estimates

P. High-fidelity models are costly, but accurate
low-bias estimates

Exploration of Multifidelity UQ for networks 4/25
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MONTE CARLO
GENERALITIES

Let consider a random variable Q, we want to compute its expected value IE [Q] (or some
high-order moment):
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Whenever a numerical problems cannot be resolved with infinite accuracy (discretization error),
the MC estimator for a specific Mth level
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E [(0114,N E [Q])2] = Var (0.N) (E [QM — Q1)2

► Sampling error: replacing the expected value by a (finite) sample average, i e

Var (4r7N) = 
Var(Q)
N 

P. Model fidelity (e.g. discretization): finite accuracy

Accurate estimation Large number of samples evaluated for the high fidelity model

E [cm o,N \tvari(,,Tch, ) N(0, 1)

In our network application we operate under the assumptions that

► The emulytics is the highest unbiased fidelity model, i.e. (E [QM — Q])2 = 0

► Our goal is to solely reduce the variance of the estimator by introducing low-fidelity
evaluations

Exploration of Multifidelity UQ for networks 6/25
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ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

Pivotal idea:

P. High-fidelity models are costly, but accurate
► low-bias estimates

P. Simplified (low-fidelity) models are inaccurate but cheap
► low-variance estimates
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C ONTROL VARIATE

SEVERAL WAYS OF ACCELERATING MC CONVERGENCE

In this talk we focus on reducing the variance of the estimator

Var (0) 
VaNr(Q)

What can we do to drive down the variance of the estimator?

#0 Increasing the number of samples —> this is going to cost us more

#1 Changing the problem with another one under the assumption that the mean is the same,
but the new variance is smaller

#2 Change the problem with a computational cheapest one (that preserves the mean in this
case)

#1: Variance reduction techniques

► Act on the sampling (Stratification, Important Sampling etc.)
► Act on the function (control variate)

Exploration of Multifidelity UQ for networks 8/25
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Approxinuate Control Woriates
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OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is
generated by adding M unbiased terms to the MC estimator

M

Q" = Q + E -
i=i

► oi MC estimator for the ith low-fidelity model
▪ known expected value for the ith low-fidelity model

P. = [(xi, . , alv/]T set of weights (to be determined)

Let's define

► The covariance matrix among all the low-fidelity models: C e RMXM
► The vector of covariances between the high-fidelity Q and each low-fidelity Q‘: c e lex

► = c/Var(Q) = ,pmVar(Q2w)fr, where pi is the correlation coefficient

(Q, Qi)

The optimal weights are obtained as cx* = —C-1c and the variance of the OCV estimator

Var (0ev) = Var (0) (1— CTC-1t)

= Var (0) (1 — RPcv), 0 < /4c.v < 1.

/4For a single low-fidelity model: 0,1 = pI.

Exploration f Multifidelity UQ for networks 9/25
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APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a
priori

P. Let's define the set of sample used for the high-fidelity model: z

P. Let's consider Ni ordered evaluations for zi (we assume Ni = FriAn)

P. Let's partition zi in two ordered subsets 4 u z2 = zi (note that in general 4 n z2 =

The generic Approximate Control Variate is defined as

Q (ct, Q(z) E ai (Cii(z1) — ih(4)) = 0(z) E ogAiczo = Q + aTA,
i=i

The optimal weights and variance can be obtained as

amv = 
—Cov [4, 41-1 Cm) [4, 0]

Var(0 (aACV)) = Var (Q) (1 — COP [A, ell T 
V ar ( 

[A" 

)

41-1 COP [A, )
el 

= Var (0) (1 — R2Acv) •

< For a single low-fidelity model: = 1i Pi (this result does not depend on the

partitioning of zi.)
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MULTILEVEL MONTE CARLO
A RECURSIVE PARTITIONING WITH INDEPENDENT ESTIMATORS (GIVEN A PRESCRIBED BIAS)

Q

I

varCe-mc) = var(0) (1 —

m m—iri /4-1 2 E P  
= .VVar(Qi)/Var(Q)Rim,mc = 2—,i=i   + 2

i=1 ri

MLMC can be obtained from ACV with

= Z

► = z1+1 for i = 1, ,M— 1

10. cei = —1 for all i

M

where

► zil and z? is F.,_1N and fiN and To = 1, it holds that ri = ri +

t 

Given the recursive nature of MLMC, we can show that Rtam, < pl.

Exploration f Multifidelity UQ for networks
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MULTIFIDELITY MONTE CARLO

AN APPROXIMATED CONTROL VARIATE WITH A RECURSIVE PARTITIONING

Qir

• • 
.1 I ! I I

MFMC can be obtained from ACV with

0.! zil = zi_ j! and 4 = zi for i = 2, ...,M

= z and z1 = z1

MFMC Coy [Q, Qi1 
= for i = 1, . . . ,M,

Var(Qi)

and the variance of the estimator is

Var (cemFmc) = Var CO) ( 

, m 

1 — Rtwmc)

— _1 2 2 ( 
 2_, 

rl — n — n-i Pi2)
RL:Fmc 2-, P, = + .

riri—i rl i=2 riri-1 PI

Given the recursive nature of MFMC, we can show that RLFmc < p?!
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F(") =

EXAMPLES OF CONVERGENT ESTIMATORS

IS IT POSSIBLE TO OVERCOME THE LIMITATION OF THE RECURSIVE SAMPLING SCHEMES?

We proposed two sampling strategies that overcome the limitation of the recursive schemes

Qv

•Ii•INE FIR

I
1 1
I l
11
I

1
(a) ACV-IS sampling strategy.

As an example, let's consider the ACV- M F estimator

am

I I! 1111

4 1
(b) ACV-MF sampling strategy.

RAcv_i" = [diag (F(1v1F1 o CJ T [c o diag (F(1"))] —1 [diag (F(I")) o e] .

The matrix F(MF) E mxili encodes the particular sampling strategy and is defined as
min(ri,rj)-1

min( ,rj)
r —1

ri

if i #j

otherwise
, for ri —> oo, F(MF) 1M and RInv_mF ROnv
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A PARAMETRIC MODEL PROBLEM

WHAT HAPPENS FOR A LIMITED NUMBER OF LOW-FIDELITY SIMULATIONS?

We designed a parametric test problem to explore different cost and correlation scenarios
(x, y 11(-1, 1))

Q = A (cos 61 x5 + sin 03/5)

Ql = A1 (cos el x3 + sin ei y3)

Q2 = A2 ( COS 6/2 X sin 02 y)
We use the following definitions

0. A = 11, A1 = 0, and A2 = -Vg (give unitary variance for each model)

► B = 7r/2 and 02 = 7r/6 and Oi varies uniformly in the bounds 02 < B1 < 0
► We consider a fixed cost ratio between models, i.e. a relative cost of 1 for Q, 1/w for Qi

and 1/w2 for Q2
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A PARAMETRIC MODEL PROBLEM
COMPARISON OF DIFFERENT ESTIMATORS (EQ. COST 100 HF)

1.0

,1 ▪ 0.8

',I 0.6

8 
0.4

-A 0.2

1.0

,g 0.8
a
.g 0.0

0.4

.g 0.2

0.0

0.8 0.8 1.0 1.2 1.4, 

(a) w = 10

1 u

0.8

0.0

0.4

0.2

0.0

IA

0.8

OA

0.4

0.2

0.0

0.8 0.8 1.2

(b) w = 15

0.6 0.8 I.g, 1.2 1.4 0.6 0.8 1.g,

(d) w = 50 (e) w = 100

1.2

1.4

1.4

1.0

0.8

0.8

OA

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

OA

(c) w = 20

0.8 1.0
0.

1.2

(f) w = 1000

14

FIGURE: Variance reduction for cost ratios of [1,1/w,1/w2] for Q, Qi, and Q2
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Simulation/Emulation tools
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SIMULATION TOOL
ns-3

ns-3

► ns-3 is a discrete event simulator for IP and non-IP addresses

► Software written in C++ with bindings available for Python

► GNU GPLv2-licensed
► Possible to construct simulations from reusable components to configure nodes, topologies

and applications

Discrete-event simulation

► Virtual time evolves from event to event
► A single-threaded event list is executed

► Events are scheduled to occur at specific virtual/simulation time

► Events can generate additional events

► Simulation ends when a specific time is reached or there are no more events

Exploration of Multifidelity UQ for networks 16/25
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EMULATION TOOL
minimega

minimega

► Tool for launching and managing virtual machines
► It can run on your laptop or distributed across a cluster

► Open source GNU GPLv3-licensed, publicly available and active project

P. Integrate real hardware with virtual experiments

Exploration of Multifidelity UQ for networks 17/25



Numerical Experiments Conclusions

Numerical Experiments
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Ns3 TEST PROBLEM
1 CLIENT - 1 SERVER NETWORK CONFIGURATION

Network Configuration

0. 1 client - 1 server (possible to extend to multiple clients)

P. 100 Requests

Uncertain Parameters

IP. DataRate U(5, 500)Mbps

O. Delay U(1, 3)ms

Fidelity definition

► HF: ResponseSize 16MB — runtime 20min
► LF: ResponseSize 1MB — runtime 50s
► LF*: Responsesize 500B and 10 Requests — runtime 0.15s

HF
LF
LF"

1
0.0417

0.000125

TABLE: Normalized Cost

Host Userland

HTTP
Server

Host OS
•

Host Userlend

CYO

Host OS
•

1Gbps Switsh

Exploration of Multifidelity UQ for networks
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UNCERTAINTY QUANTIFICATION
MC VERSUS MULTIFIDELITY ESTIMATOR
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FIRST minimega-NS3 DEMONSTRATION
NETWORK CONFIGURATION: 1 CLIENT - 1 SERVER

Network Configuration

► 1 client - 1 server (possible to extend to multiple clients)
► 100 Requests

Uncertain Parameters

P. DataRate 14(5,500)Mbps

P. ResponseSize lnU(500,16 x 106)B

Fidelity definition

► minimega — HF: 100 Requests (average over 10 repetitions)
► ns3 — LF: 10 Requests (Delay 50ms)
► ns3 — LF*: 1 Requests (Delay 5ms)

HF
LF
LF"

1
0.016
0.002

TABLE: Normalized Cost

We assume serial execution for the
low-fidelity model, however we might easily

  increase the efficiency of LF (ias3) by

running multiple concurrent evaluations
Exploration of Multifidelity UQ for networks
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FIRST minimega-NS3 DEMONSTRATION
ESTIMATOR STANDARD DEVIATION
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► The variance reduction we obtain w.r.t. MC is

Var(0 (c WV)) — Var (Q) (1 — 1.1 4)

P. The number of low-fidelity simulations is
NLF = N x r1 where

=
CHF  PI. 
CLF 1—pi

11. For each HF simulation we need to spend an extra
cost in LF simulations

CLF
Eq.Cost Ctot = N (1 + rs —

CHF

IP. For this case

Pi 7'1 rICLF/CHF
LF 0.86 4.69 0.075

LF* 0.90 10.83 0.022
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FIRST minimega-NS3 DEMONSTRATION
EXPECTED VALUE ESTIMATION
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11. The variance reduction we obtain w.r.t. MC is

Var (Q (an) = var ( 0) (1 1'1
rl 
 —  pl)

It. The number of low-fidelity simulations is
NLF = N x r1 where

rl =
CLF 1 — pl

11. For each HF simulation we need to spend an extra
cost in LF simulations

Eq.Cost Ctot = N (1. + r1

11. For this case

CL,

CIg

Pl r1 r1CLF/CHF
LF 0.86 4.69 0.075

LF* 0.90 10.83 0.022
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FIRST minimega-NS3 DEMONSTRATION
ESTIMATOR STANDARD DEVIATION
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Pt. 7'1 r1CIF 1 CHF
LF 0.86 4.69 0.075
LF* 0.90 10.83 0.022

Example (for LF*)

▪ Number of HF runs: N = 500
► Number of LF* runs: rl x N = 5415

P. Equivalent LF cost: r1 x N x CLF— = 11
CHF

P. Total estimator cost (HF + LF*):
Cto( = 500 + 11 = 511

► Variance reduction: (1 r1  = 0.23
rt.

More than 70% of variance reduction is obtained by adding only an equivalent cost of 11 HF runs
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FIRST minimega-NS3 DEMONSTRATION
BEYOND THE SINGLE MODEL MULTIFIDELITY

Is it efficient to leverage multiple low-fidelity models at the same time?

HF LF LF*
HF 1 0.86 0.90
LF 0.86 1 0.99
LF* 0.90 0.99 1

TABLE: Correlation matrix

0.26
0.19

:ItICN/80J ACV
0.39
0.23

HF+LF
HF-FLF*

HF-FLF-FLF* N/A

TABLE: Variance Reduction, 1 — R2

Var (0) = Var (e2) (1 —R2)

NOTE:

► OCV assumes that the LF expected values are known, i.e. maximum attainable variance
reduction

Exploration of Multifidelity UQ for networks 24/25
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CONCLUSIONS
PRELIMINARY RESULTS: MULTIFIDELITY UQ FOR NETWORK APPLICATIONS

State-of-the-art

► Multifidelity Uncertainty Quantification proved to be effective for many different applications

► Encouraging preliminary results have been obtained for simple network configurations

Future Directions

► Extension to additional statistics (Tails, risk measures, etc.)
► Multifidelity Sensitivity Analysis

► Extension to discrete variables

► Extension to more complex network configurations/topologies

► Exploration of data-driven approaches for LF modelling (model reduction, active directions,
etc.)

► Exploration of surrogate-based approaches

Exploration of Multifidelity UQ for networks 25/25
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