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Network modeling 1 ) | Experimer

NETWORK MODELS
SIMULATION VS EMULATION

Why are we interested in network models?
» Network operators: understand the potential impacts of changes before implementing them

» Network designers: understand trade-offs before network creation

Network modeling refers to:

» Simulation: similar to their physics-modeling counterparts and they are based on a deep
understanding of the underlying processes to simulate network components and interactions
in software

» Emulation: run the real software on virtualized hardware thus it is able to capture unknown
or not well-understood behaviors

A crude fluid dynamics analogy: Let's consider a straight wing flying...

> ..at nearly 0° angle-of-attach with laminar attached flow — physics well-known — thin
airfoil theory (simulation)

» _.at high angle-of-attach with turbulent detached flow — physics poorly understood —
Large Eddy Simulations (emulation)

@ Emulation has a higher-degree of realism, but this comes at an higher computational cost

Exploration of Multifidelity UQ for networks 1/25



Network modeling i

NETWORK MODELS
SIMULATION VS EMULATION: STRENGTHS AND DIFFERENCES

Simulation
¢’ Fast to develop
¢ Run faster than real-time since they control the clock

v Easy to run in parallel because they are neither time-dependent or reliant on virtualized
hardware (which might be limited)

X Unable to capture emergent behaviors

Emulation
¢ Run the real software therefore closely resembles a physical testbed

X Requires more hardware and therefore the number of concurrent evaluations are limited

Emulytics
» Combine Emulation and analytics
» Includes hardware in the loop, simulation, and emulation (and human in the loop)

LIVE VIRTUAL CONSTRUCTIVE

We focus here only on the
virtual layer

Figure courtesy of David Fritz, SAND2018-3927
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Network modeling

NETWORK MODELS
WHY NETWORK MODELING AT SANDIA? (COURTESY OF DAVID FRITZ, SAND2018-3927")

» DevOps: Ensure operation of new hardware, software, services in high-consequence
environments. Predictive analysis to detect malfunctions, misconfigurations and malicious
consequences

Malware: Understanding of malware through pseudo-in situ execution

ICS/SCADA: Under uncertain threats, what are the best countermeasures for my
IT-connected ICS systems? Can we detect attacks? Can we assess resiliency of the
IT-controls over the entire power grids?

» Nuclear Weapons: Can we assure Communication, Command and Control regardless of
network state and threats?

For all these applications we operate in an extreme uncertain environment/scenario and we need to
quantify the probability of obtain certain desired responses by our systems

Uncertainty Quantification

http://minimega.org/presentations/gt_2018.slide#7
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Multifidelity UQ

Multifidelity Uncertainty Quantification
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Multifidelity UQ rimer

UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:
» High-dimensionality, non-linearity and bifurcations/discontinuities

> Large set of modeling choices available (network topology, operative conditions, etc.)

Natural candidate:

» Sampling-based (MC-like) approaches because they are non-intrusive, robust and flexible...

» Drawback: Slow convergence O(Nfl/z) — many realizations to build reliable statistics

Goal of MF UQ:

Reducing the computational cost of obtaining MC reliable statistics by combining several models

Pivotal idea:

> Simplified (low-fidelity) models are inaccurate but computationally inexpensive
= low-variance estimates

» High-fidelity models are costly, but accurate
= low-bias estimates

Exploration of Multifidelity UQ for networks 4/25



Multifidelity UQ

MONTE CARLO
GENERALITIES

Let consider a random variable @, we want to compute its expected value E [@] (or some
high-order moment):

6 1o
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, #Hit
Let's use MC to compute the value m = N
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Whenever a numerical problems cannot be resolved with infinite accuracy (discretization error),
the MC estimator for a specific Mth level

1
QMC def ZQ (i)
N

i=1
, #Hit
Let's use MC to compute the value 7 =
N =100, Nx=16 ——
pi ——
1 — v Est Mean (Nx=4) ——
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Multifidelity UQ

MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E (@)% —E(Q)?] = Var Q%) + (E[Qm — Q)°

»> Model fidelity (e.g. discretization): finite accuracy

Accurate estimation = Large number of samples evaluated for the high fidelity model

In our network application we operate under the assumptions that
» The emulytics is the highest unbiased fidelity model, i.e. (E[Qwm — Q)i=0

» Our goal is to solely reduce the variance of the estimator by introducing low-fidelity
evaluations

Exploration of Multifidelity UQ for networks 6/25



Multifidelity UQ

ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

Pivotal idea:

» High-fidelity models are costly, but accurate
» low-bias estimates

> Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

Single Fidelity

Multi Fidelity

1

Hit
Miss

Hit e
Miss @

Hi

Hi
Miss
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Multifidelit; rimer

CONTROL VARIATE
SEVERAL WAYS OF ACCELERATING MC CONVERGENCE

In this talk we focus on reducing the variance of the estimator

Var (Q) ¥or( Q)

What can we do to drive down the variance of the estimator?
#0 Increasing the number of samples — this is going to cost us more

#1 Changing the problem with another one under the assumption that the mean is the same,
but the new variance is smaller

#2 Change the problem with a computational cheapest one (that preserves the mean in this
case)

#1: Variance reduction techniques
» Act on the sampling (Stratification, Important Sampling etc.)

» Act on the function (control variate)

Exploration of Multifidelity UQ for networks 8/25



Multifidelity UQ

Approximate Control Variates

Exploration of Multifidelity UQ for networks 8/25



Multifidelity UQ

OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is
generated by adding M unbiased terms to the MC estimator

M
QCV:QJrZai (Qi —Hi)
i=1
> Qi MC estimator for the ith low-fidelity model
» u; known expected value for the ith low-fidelity model

> o =[a,..., oy set of weights (to be determined)

Let's define
» The covariance matrix among all the low-fidelity models: C € RM*M

> The vector of covariances between the high-fidelity @ and each low-fidelity @;: ¢ € RY

» ¢ =c/Var(Q) = [p1Var(@1), ..., MVar(QM)]T, where p; is the correlation coefficient
(@ Qi)
The optimal weights are obtained as a* = —C~ ¢ and the variance of the OCV estimator

Var (QCV) = Var(Q) (1 — éTC_lé)
= Var(Q) (1-R3y), 0<Ri,y <1

@ For a single low-fidelity model: R, _; = p?

Exploration §f Multifidelity UQ for networks 9/25



Multifidelity UQ

APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a
priori

» Let's define the set of sample used for the high-fidelity model: z

> Let's consider N; ordered evaluations for @;: z; (we assume N; = [r;N1])

» Let's partition z; in two ordered subsets zi1 U z? = z; (note that in general zi1 n zi2 #0)
The generic Approximate Control Variate is defined as

M M
Qa,2) =Q() + > ai (Qua) — a(x)) = Q@) + > widi(z) = Q+a"A,
=1

i=1

The optimal weights and variance can be obtained as

oV = _Cov (A, A] 7! Cov [é, Q]

var(@ (7)) = var(Q) <1 oo fad] S e o Q])

=var(Q) (1 - Riey) -

@ For a single low-fidelity model: Ricv_l = rlflp% (this result does not depend on the

1
partitioning of z;)

Exploration of Multifidelity UQ for networks 10/25



Multifidelity UQ rimer

MULTILEVEL MONTE CARLO

A RECURSIVE PARTITIONING WITH INDEPENDENT ESTIMATORS (GIVEN A PRESCRIBED BIAS)

Q @ Q Qu
! MLMC can be obtained from ACV with

> Zil =z

> 22 =z fori=1,..., M—1

» a3 = —1foralli
! I MLMC u

- i 5 .

1 I (3) = Q43" (-1 (@ted) — a(ad)
La i=1

M-1
Tt 2y BRI —opim, m= y/Var(Q) /Var(@)
i

i=1
where

> zi1 and zi2 is 7;_1N and ;N and 7o = 1, it holds that r; = 7; +7;_1

@ Given the recursive nature of MLMC, we can show that R2j o < p?
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Multifidelit; rimer

MULTIFIDELITY MONTE CARLO
AN APPROXIMATED CONTROL VARIATE WITH A RECURSIVE PARTITIONING

Q Q Q o Qu

- . MFMC can be obtained from ACV with
= 5 >zl =z _,and2’ =z fori=2,....M
lllu
=%

> 7zl =zand 22 =z,

Cov (@, Q; .
a?ﬂFMczfﬂ, for i=1,...,M,
Var(Q;)
and the variance of the estimator is
Var (QMFMC) = Var (Q) (1 — RIZVIFMC)
2 Mori—rici o a(rn—-1 Ern—ripf
R T i PR + i TTic1f )
— Z ririer ! 1 ; riric1 Py

@ Given the recursive nature of MFMC, we can show that R&pyc < 02
12/25
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Multifidelit; rimer

EXAMPLES OF CONVERGENT ESTIMATORS
IS IT POSSIBLE TO OVERCOME THE LIMITATION OF THE RECURSIVE SAMPLING SCHEMES?

We proposed two sampling strategies that overcome the limitation of the recursive schemes

Q @ @ Qu Q & @ Qu

= 2 .,‘ . x E I E ! I

e

(a) ACV-IS sampling strategy. (b) ACV-MF sampling strategy.

As an example, let’s consider the ACV-MF estimator

By um = [diag (F<MF>) o é]T [C o diag (F(MF))] - [diag (F<MF>) o é} .

The matrix FMP) ¢ RMXM encodes the particular sampling strategy and is defined as
min(ri,rj)—l

ey S
E™ = min(ry ry) i , for ry—oo, FM 1y and Ricy_yr — Riey

otherwise
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Multifidelity UQ rimer

A PARAMETRIC MODEL PROBLEM
WHAT HAPPENS FOR A LIMITED NUMBER OF LOW-FIDELITY SIMULATIONS?

We designed a parametric test problem to explore different cost and correlation scenarios
(2,5 ~U(-1,1))

R=A (cos@x5 + sin0y5>
Q1 =A; <cos 01 %° + sin 61 y3)
Qs = Ay (COS 09 x + sin O9 y)
We use the following definitions
> A=+11,A; = V7, and Ay = V3 (give unitary variance for each model)

» 6 =mx/2and 63 = 7/6 and 6; varies uniformly in the bounds 6 < 6; < 6

» We consider a fixed cost ratio between models, i.e. a relative cost of 1 for @, 1/w for @;
and l/w2 for Qo

—_— OCV
—e— OCV-1

— 0CV/OCV-1

‘orrelation
o

C

0.0
0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 12 1.4
0 th
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Multifidelit; rimer

A PARAMETRIC MODEL PROBLEM
COMPARISON OF DIFFERENT ESTIMATORS (EQ. CosT 100 HF)

0.0 0.0

0.6 0.8 1.0 12 14

(a) w=10 (b) w=15 (c) w=20

0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 12 14
0 A

(d) w =50 (e) w = 100 (f) w = 1000

FIGURE: Variance reduction for cost ratios of [1,1/w, 1/w?] for @, @1, and @
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Multifidelity

Simulation/Emulation tools
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Multifidelity

SIMULATION TOOL

ns-3

ns-3 is a discrete event simulator for IP and non-IP addresses
Software written in C++ with bindings available for Python
GNU GPLv2-licensed

vV vyVvYyy

Possible to construct simulations from reusable components to configure nodes, topologies
and applications

Discrete-event simulation

» Virtual time evolves from event to event

» A single-threaded event list is executed

» Events are scheduled to occur at specific virtual /simulation time

» Events can generate additional events

» Simulation ends when a specific time is reached or there are no more events

Exploration of Multifidelity UQ for networks 16/25



Multifidelity

EMULATION TOOL

minimega

minimega
» Tool for launching and managing virtual machines
» It can run on your laptop or distributed across a cluster
» Open source GNU GPLv3-licensed, publicly available and active project
>

Integrate real hardware with virtual experiments

Exploration of Multifidelity UQ for networks 17/25



Numerical Ex

Numerical Experiments
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Numerical Experiments

NS3 TEST PROBLEM
1 CLIENT - 1 SERVER NETWORK CONFIGURATION

Network Configuration
» 1 client - 1 server (possible to extend to multiple clients)
» 100 Requests

Uncertain Parameters
» DataRate ~ U(5,500)Mbps
» Delay ~ U(1,3)ms

Fidelity definition
» HF: ResponseSize 16MB — runtime 20min
» LF: ResponseSize 1MB — runtime 50s
» LF*: ResponseSize 500B and 10 Requests — runtime 0.15s

Host Userland Host Userland
C HTTP HTTP
HE 1 Server Client
LF 0.0417 Host 0S Host 0S
LF* 0.000125 ] T
TABLE: Normalized Cost : 1Gbps Switch :

FIGURE: Network Configuration
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A ) Numerical Experiments

UNCERTAINTY QUANTIFICATION
MC VERSUS MULTIFIDELITY ESTIMATOR

# Requests/second (Expected Value)

10? S 0.026 . S
Single Fidelity —=— Single Fidelity ——
Mult Fidelity (HF-LF) —— &5 Multi Fidelity (HF-LFY) ——
Multi Fidelity (HF-LF*) —— :
c
; = 0022 g
% S 002
e )
2 £ 0018
2 10 E
8 g 0016 4
5 ]
g a5 S o014
£ st e ) 3
710 * S 0012 E
0.01
10° 0.008 P
10 100 1000 10000 100000 0 50 100 150 200 250 300 350 400 450 500 550
Equivalent Cost Equivalent HF cost
FIGURE: Estimators Standard Deviation. FIGURE: Confidence Interval convergence
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A i B Numerical Experiments n

FIRST minimega-NS3 DEMONSTRATION
NETWORK CONFIGURATION: 1 CLIENT - 1 SERVER

Network Configuration
» 1 client - 1 server (possible to extend to multiple clients)
» 100 Requests

Uncertain Parameters
» DataRate ~ U(5,500)Mbps
> ResponseSize ~ In/ (500,16 x 106)B

Fidelity definition
> minimega — HF: 100 Requests (average over 10 repetitions)
» ns3 — LF: 10 Requests (Delay 50ms)
> ns3 — LF*: 1 Requests (Delay 5ms)

C Host Userland Host Userland
HF 1 HTTP HTTP
LF | 0.016 S |
LF* 0.002
Host OS Host OS
. . "
TABLE: Normalized Cost [ [
1Gbps Switch
We assume serial execution for the
low-fidelity model, however we might easily
increase the efficiency of LF (ns3) by FIGURE: Network Configuration

running multiple concurrent evaluations
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FIRST minimega-NS3 DEMONSTRATION
ESTIMATOR STANDARD DEVIATION

Estimator StDev

1000

100

Number of Requests/s

Single Fidelity

Multi Fidelity (HF-LF)

Multi Fidelity (LF'g
N

s

10 100
Equivalent HF cost

FIGURE: Exp. Value StDev

Exploration of Multifidelity UQ for networks

1000

Experiments

The variance reduction we obtain w.r.t. MC is
5 (LACY - rp—1,
Var o = Var 1-— )
(2(%)) = var(@) (1-"42)

The number of low-fidelity simulations is
Npp = N x ry where

Cur A3
Crr 1—p3

For each HF simulation we need to spend an extra
cost in LF simulations

(¢]
Eq.Cost : Cyot =N (1 +r; jLF )
Car

For this case

P1 ri r1Crr/Chr
LF 0.86 4.69 0.075
LF* 0.90 10.83 0.022
21/25



Numerical Experiments

FIRST minimega-NS3 DEMONSTRATION
EXPECTED VALUE ESTIMATION

»  The variance reduction we obtain w.r.t. MC is

Number of Requests/s -1
A ( L~ACV A 23! 2
900 - — Var(Q (g )) = Var (Q) 1-— 1
Single Fidelity (HF) —— Ty
800 Multi Fidelity (HF-LF) —— |
_ Multi Fidelity (HF-LF*) —— »  The number of low-fidelity simulations is
§ 700 1 Nrp = N X r; where
< 600 1 2
3 00 = Cur  PI
= 1 - 2
g Crr 1—p]
3 400 1
5 P For each HF simulation we need to spend an extra
5 300 1 cost in LF simulations
S
S 200 1 C
o
Eq.Cost: Cipt =N (141 L¥
100 | 1 CHF
0 - > .
i 100 1000 For this case
Equivalent HF cost p1 1 rchF/CHF
. LF 0.86 4.69 0.075
FIGURE: Exp. Value Confidence Interval LF* | 090 | 1083 0.022
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A ) Numerical Experiments

FIRST minimega-NS3 DEMONSTRATION
ESTIMATOR STANDARD DEVIATION

Number of Requests/s

1000 T
Single Fidelity ——
Multi Fidelity (HF-LF) —e— 1 ri r1Crr /Crr
Multi Fidelity (L) —— LF 0.86 4.69 0.075
NE — LF* 0.90 | 10.83 0.022
> o
5 100 Example (for LF*)
7]
S » Number of HF runs: N = 500
©
£ » Number of LF* runs: r; X N = 5415
iR [ 1
» Equivalent LF cost: r{ X N x A —iq
CHr
P Total estimator cost (HF + LF*):
1 H Ctor = 500 + 11 = 511
10 100 1000 o1
Equivalent HF cost P Variance reduction: (1 — L p%) =0.23
ra

FIGURE: Exp. Value StDev

@ More than 70% of variance reduction is obtained by adding only an equivalent cost of 11 HF runs
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A ) Numerical Experiments

FIRST minimega-NS3 DEMONSTRATION
BEYOND THE SINGLE MODEL MULTIFIDELITY

Is it efficient to leverage multiple low-fidelity models at the same time?

HF LF LF* OCV | ACV

HF 1 0.86 0.90 HF+LF 0.26 0.39
LF 0.86 1 0.99 HF+LF* 0.19 0.23
0.99 1 HF+LF+LF* - N/A

LF* 0.90

TABLE: Correlation matrix TABLE: Variance Reduction, 1 — R?

Var(Q) - Var(Q) (1 7R2>

NOTE:
» OCV assumes that the LF expected values are known, i.e. maximum attainable variance

reduction

24/25
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Conclusions

Concluding Remarks
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CONCLUSIONS
PRELIMINARY RESULTS: MULTIFIDELITY UQ FOR NETWORK APPLICATIONS

State-of-the-art

>

>

Multifidelity Uncertainty Quantification proved to be effective for many different applications

Encouraging preliminary results have been obtained for simple network configurations

Future Directions

>

vV vy vYyy

Extension to additional statistics (Tails, risk measures, etc.)
Multifidelity Sensitivity Analysis

Extension to discrete variables

Extension to more complex network configurations/topologies

Exploration of data-driven approaches for LF modelling (model reduction, active directions,
etc.)

Exploration of surrogate-based approaches
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Conclusions

THANKS!
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