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Motivation |

Laboratories

Sandia is the nation’s leading laboratory for developing advanced pulsed power technologies
* Nuclear weapon physics
* Inertial confinement fusion

Pulsed power machines are unique environments for extreme environment research

(a) Preconceptual Layout of Z-Next  (b) Z-Next Central Power (c) Plasma dominated regions with
(here Z-300) Flow Section TPH Convolute, Inner MITL, Load

Z-Next

We want to confidently scale-up and design Next-Generation Pulsed Power Machines

Power flow and current loss need to be addressed for scale-up design
e Current loss is observed from plasma formation




Current Understanding of Plasma Formation on Z
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Desorption Modeling
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Scaling Arguments for
Plasma Modeling Codes Next-Generation Pulsed Power
Machines
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Confidently scale-up and design Next-Generation Pulsed Power Machines

Problem:

Power flow and current loss need to be addressed for scale-up design
* Current loss is observed from plasma formation

Approach:

Use molecular dynamics to predict hydrocarbon and hydrocarbon/water mixture
desorption composition and rates to inform plasma models/codes




Details of Desorption Modeling

Desorption Modeling

ClayFF (substrate) with SPC (water):

Etotal = ECoul + EVDW + Ebond + Eangle + Etorsion
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ClayFF does well with water binding
energies with metal oxides.

* SPC Water
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Lane, Leung, Thompson, and Cuneo, J. Phys. Cond. Matt., 2018

Initial desorption studies of focused on Water:
* Composition
* Coverage

Electrode Temperature

Temperature ramp from
300K to 1300K
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Desorption Modeling

ClayFF with SPC with OPLS (hydrocarbons): * ‘
Etotal = ECoul + EVDW + Ebond + Eangle + Etorsion
. e’ 94,
Coul dme B 1, Hydrocarbon (ex. C,,H<)
Ro" = Roi' 6 H
Eypy = EDW'J Bl Y B o-Fe,0; hematite (0001)
= Tij Tij —
: p roov e suove e, :
_ 2 oo : Sazeer
Ebondstretchij_kl(rij_ro) emeaneg tant yeas s o az e an e ~ ~
E‘ >
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Side view of substrate
Etorsion - Z An Cosn_1(¢)
n=1,5
* ClayFF does well with water binding New Study focusing on:
energies with metal oxides. « Chain length
«  SPC Water . Cham architecture
*  Mixtures

* OPLS Hydrocarbons 7




Chain Length Effect

Ramp Rate: 2000K/ns

1296 Carbons Initially on Surface
= {54 C,,Hs,, 108 C;,H,, 216 C,H,,}

nchains

s o o
EEN N o0
[ | |

<
b
|

Fraction of Initial HC Coverage

| |
400 600

T [K]

800

1000

1200

Binding Energy [eV]

=
~J

o
o0

o
o

I
f—t

-1.1

Sandia
National
Laboratories

Instantaneous energy difference
between initial and final state

Binding/Desorption energy vs Chain Length
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Carbons in Backbone

Longer chains more strongly adsorbed to surface due to increased vDW interactions




Chain Architecture Effect

Naphthene

I

More realistic representation of
mineral oil found in Z-machine
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*  Nghains = 127 C,4He, paraffin chains, 27 C,,H,s naphthene chains}
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Sandia

Mixtures: Initialization National

108 C,,H,¢ chains (red/blue) / 192 water
(pink/cyan) molecule mixture. Water is initially s»
placed on top of the hydrocarbons at T = 100K.
Simulation is ramped from 100K to 300K over
the course of 0.25ns.

Laboratories
t=0 t =0.25ns

The water moves to the surface causing the
hydrocarbons to lift off the surface and sit
atop the water.
Hydrocarbons begin to phase separate from A
the water and form rafts.

This simulation indicates the water’s o2
propensity to sit at the surface compared to i
the hydrocarbons is very strong

Top Row: Side view of substrate. Bottom Row: Bird’s-eye view
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Mixtures: Varying hydrocarbon concentration
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Mixtures: Varying hydrocarbon concentration
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When 50% of water has desorbed:

No HC: 738K
“Low” HC concentration: 761K (~3.1% increase)
“High” HC concentration: 776K (~5.1% increase)

Increasing the hydrocarbon concentration/coverage on top of the water increases the desorption temperature
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Mixtures: Varying water concentration
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Mixtures: Varying water concentration
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When 50% of hydrocarbon has desorbed:

No water: 843K
2/3 water coverage: 730K (~13.4% decrease)
Full water coverage: 617K (~26.8% decrease)

Increasing the water concentration/coverage on beneath the hydrocarbons decreases the desorption temperature




Conclusions: How Hydrocarbons affect desorption |
Laboratories

Chain Length

* Longer hydrocarbons desorb slower then short hydrocarbons
* Supported by longer hydrocarbons having a higher desorption energy

Chain Architecture

* (24 Naphthene and C24 Paraffin have similar desorption profiles
* Additional statistics and characterization of binding energy are necessary to further conclude any difference
in the desorption as a function of chain architecture

Mixtures

* Hydrocarbons are observed to sit on top of water due to water having a higher desorption energy/area
than hydrocarbons

* Increasing the hydrocarbon concentration/coverage while keeping the water coverage the same
increases the water desorption temperature (~ 3%-5% for coverages tested)

* Increasing the water concentration/coverage while keeping the number of hydrocarbons constant

decreases the hydrocarbon desorption temperature (up to ~27% for full water coverage)
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Supplementary Slides




. Sandia
Green: Carbons in cyclohexane (naphthene) National

Blue: Carbons in backbone (naphthene) Laboratories
Purple: Carbons (paraffin)
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Current Understanding of Plasma Formation on Z m|

Laboratories

Accurate understanding of contaminant
composition and desorption processes are
necessary to inform plasma codes

Plasma modeling/codes

* Large investment to predict power flow phenomena
* Rely on boundary conditions at electrode boundary

Evidence of hydrocarbons and will affect desorption composition and rates
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Black: 8 Angstroms
Red: 20 Angstroms
Blue: Full Evaporated
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Details of Desorption Modeling

Desorption Modeling

Previous Work (Non-Reactive MD):

Etotal = ECoul + EVDW + Ebond + Eangle + Etorsion
q4;

Ecou= 4
.71'60 l¢j rlj

Roij e Ro,ij §
Eypw = EDO,I] (_ —2
Z Tij Tij

_ _ 2
Ebond stretch ij — kl(rij ro)

E angle bend ijk

= k2(0yk 0)2

Etorsion — Z An Cosn_1(¢>

n=1,5

* ClayFF does well with water binding
energies with metal oxides.

* SPC Water

* OPLS Hydrocarbons

E

Reactive MD (ReaxFF)

= Eyona + Eover T Eunter + Byt T Epen + Evory +

system bond over under val tors

Econ_] o EvdWaa.ls + ECoulomb

Allows bond-breaking/reactivity
“Oxide” force-field (Aryanpour [2010])

Electrostatic energy

N q4.

E(q) = Z X4, + rliqiz ¥ Tap(rfi)kc (rs l ,—3)1/3
i=1 ij ij

At each timestep, charges are
adjusted to minimize energy
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New Study focusing on:
* Chain length

e Chain architecture

* Mixtures
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