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Motivation

Sandia is the nation's leading laboratory for developing advanced pulsed power technologies
• Nuclear weapon physics
• Inertial confinement fusion

Pulsed power machines are unique environments for extreme environment research
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We want to confidently scale-up and design Next-Generation Pulsed Power Machines

Power flow and current loss need to be addressed for scale-up design
• Current loss is observed from plasma formation



Current Understanding of Plasma Formation on Z
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Motivation

Desorption Modeling

Experimental Surface

Characterization
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Motivation

L

0000000C

Contaminants

•

Goal: 

Confidently scale-up and design Next-Generation Pulsed Power Machines

Problem: 

Power flow and current loss need to be addressed for scale-up design
• Current loss is observed from plasma formation

Approach: 

Use molecular dynamics to predict hydrocarbon and hydrocarbon/water mixture
desorption composition and rates to inform plasma models/codes
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Details of Desorption Modeling

Desorption Modeling

CIayFF (substrate) with SPC (water): 

Etotal — ECoul EVDW Elpond Eangle ▪ torsion

e2 q iqj

Ecoul= A
4.7(6-0; rij

Ro ji 12

EVDW =
R0161

—

rti

Ebond stretch ij = 1C10-11 rof

Eangle bend ijk = k2(0ijk 00)2

Etorsion — An COSTh 1(0)
n=1,5

• CIayFF does well with water binding
energies with metal oxides.

• SPC Water
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Lane, Leung, Thompson, and Cuneo, J. Phys. Cond. Matt., 2018

Initial desorption studies of focused on Water:

• Composition

• Coverage

• Electrode Temperature

Temperature ramp from

300K to 1300K



Details of Desorption Modeling

Desorption Modeling

CIayFF with SPC with OPLS (hydrocarbons): 

Etotal = ECoul EVDW Ebonci Eangle + torsion

e2 giqj

Ecoul=
4greo; ru

R04 12 Ro,u 6

ENTDNAT = 2
(

Ebond stretch ij = k 1(rij  — 
r

Eangle bend ijk = k2(0iik — 
00)2

Etorsion = cosn-1 (h)
n=1,5

• CIayFF does well with water binding

energies with metal oxides.

• SPC Water

• OPLS Hydrocarbons
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Hydrocarbon (ex. C24H50)

a-Fe203 hematite (0001)
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New Study focusing on:

• Chain length

• Chain architecture

• Mixtures
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Chain Length Effect

Ramp Rate: 2000K/ns

1296 Carbons Initially on Surface

nchains = {54 C24H50, 108 C12H26, 216 C6H14}

400 600 800
T fig

1000 1200

Sandia
National
Laboratories

Instantaneous energy difference

between initial and final state

Binding/Desorption energy vs Chain Length

6 12 18
Carbons in Backbone

Longer chains more strongly adsorbed to surface due to increased vDW interactions

24



Chain Architecture Effect

Paraffin Naphthene

More realistic representation of
mineral oil found in Z-machine

— Paraffin
— Naphthene
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T [K]
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Ramp Rate: 2000K/ns

648 Carbons Initially on Surface

• nchains = {27 C24H50 paraffin chains, 27 C24H48 naphthene chains}



Mixtures: Initialization

108 C12H26 chains (red/blue) / 192 water

(pink/cyan) molecule mixture. Water is initially

placed on top of the hydrocarbons at T = 100K.

Simulation is ramped from 100K to 300K over

the course of 0.25ns.

• The water moves to the surface causing the

hydrocarbons to lift off the surface and sit

atop the water.

• Hydrocarbons begin to phase separate from

the water and form rafts.

• This simulation indicates the water's

propensity to sit at the surface compared to

the hydrocarbons is very strong

t = 0 t = 0.25ns

Top Row: Side view of substrate. Bottom Row: Bird's-eye view
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Mixtures: Varying hydrocarbon concentration
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Mixtures: Varying hydrocarbon concentration

— 108 C241-150 w/ water

— Water w/ 108 C
24
H50

54 C
24H50 w/ water

— Water w/ 54 C
24
H50

— Water (no HC)

400 600 800
T IK1

1000 1200

When 50% of water has desorbed:

No HC: 738K

"Low" HC concentration: 761K (-3.1% increase)

"High" HC concentration: 776K (-5.1% increase)
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Increasing the hydrocarbon concentration/coverage on top of the water increases the desorption temperature
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Mixtures: Varying water concentration

— Full Water
— 2/3 Water
— No Water

,
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— Full Water (w/ no HC)
— Full Water (w/ 54 C24H50)

— 2/3 Water (w/ 54 C24H50)
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T [K]



Mixtures: Varying water concentration
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— Full Water
— 2/3 Water
— No Water 

71-11 , 
600 800

T [K]
1000 1200

When 50% of hydrocarbon has desorbed:

No water: 843K

2/3 water coverage: 730K (-13.4% decrease)

Full water coverage: 617K (-26.8% decrease)
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Increasing the water concentration/coverage on beneath the hydrocarbons decreases the desorption temperature
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Conclusions: How Hydrocarbons affect desorption

Chain Length

• Longer hydrocarbons desorb slower then short hydrocarbons
• Supported by longer hydrocarbons having a higher desorption energy

Chain Architecture
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• C24 Naphthene and C24 Paraffin have similar desorption profiles
• Additional statistics and characterization of binding energy are necessary to further conclude any difference

in the desorption as a function of chain architecture

Mixtures

• Hydrocarbons are observed to sit on top of water due to water having a higher desorption energy/area
than hydrocarbons

• Increasing the hydrocarbon concentration/coverage while keeping the water coverage the same
increases the water desorption temperature (— 3%-5% for coverages tested)

• Increasing the water concentration/coverage while keeping the number of hydrocarbons constant
decreases the hydrocarbon desorption temperature (up to —27% for full water coverage)
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Supplementary Slides
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Green: Carbons in cyclohexane (naphthene)

Blue: Carbons in backbone (naphthene)

Purple: Carbons (paraffin)
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The right y-axis is height in Angstroms. Note the two y-axis are

on slightly different scales
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Water desorption from full monolayer

Black: Starting from initial ramp (100K to

300K, not equilibrated at 300K, so most

chains laying flat)

Red: Equilibrated at 300K initially for > lns
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Current Understanding of Plasma Formation on Z

Accurate understanding of contaminant
composition and desorption processes are

necessary to inform plasma codes
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Plasma modeling/codes

• Large investment to predict power flow phenomena
• Rely on boundary conditions at electrode boundary

Evidence of hydrocarbons and will affect desorption composition and rates
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Black: 8 Angstroms

Red: 20 Angstroms

Blue: Full Evaporated
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Binding Energies:

Non-React. — -1.055 eV

ReaxFF Oxide -> React. —4.824 eV



Details of Desorption Modeling

Desorption Modeling

Previous Work (Non-Reactive MD): Reactive MD (ReaxFF) 

Etotal = ECoul EVDW Ebond Eangle

e
2 giqj

ECou1 =
4yre.; rij

EvDw =

R 12
0,1j R 60,1"

— 

 

2  
u r) rii )1

torsion

Eborld stretch ij = 2k 1(r — r0) 

Eangle bend ijk = k2(eijk — 00)2

Etorsion = An cosn 1(0

n=1,5

• CIayFF does well with water binding

Esyste.= Ebond Eover Eunder Evai Epen Enna +

Econj Ewlwaals ECoulornb

• Allows bond-breaking/reactivity

• "Oxide" force-field (Aryanpour [2010])

• Electrostatic energy

giqj 
E(q) = + 10,2 + Tap(Ok, 3 _3 1/3

i= (r. + )

• At each timestep, charges are

energies with metal oxides. adjusted to minimize energy

• SPC Water

• OPLS Hydrocarbons
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New Study focusing on:

• Chain length

• Chain architecture

• Mixtures

Hydrocarbon (ex. C24H50)

a-Fe203 hematite (0001)
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