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Motivation

High-fidelity simulations of 3D turbulent compressible flows

Challenges
o Resolve various fluid scales ; o
ressure a
5 Stablhty VS, accuracy 5.0e+04 55000 60000 65?00 70?00 75(])00 8,3e|+OL‘l

° Large-scale or complex geometry

Numerical requirements
° High-order
° Low dissipation
o Handle shocks
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Robust Shock Capturing Across Multi-Block Interface

Capturing shocks across multi-block interface is ditficult!

Woodward Colella with conventional high-order finite difference

Density

10 . . . ; 6 .
5t ; )
8t ! '\
i e
6 > i
'J;J ]
c3 |
q') ]
af - | !
2/ | :
21 | —  Ref. i \
1 — Two Blocks E \ |
--+ Single Block |
80 0.2 0.4 0.6 0.8 1.0 80 0.2 0.4 0.6 0.8 1.0

X X
Solution in time N=512, t; = 0.04, N, = 2000



Numerical Basis: Generalized Summation-By-Parts

Nonlinear conservation laws
u, + (fx)x, =0, xx € Q, 1 €[0,00),
B(u) = ", x, € 9Q, 1 € [0, c0), w + Dipfy = Py gt + P gh B =1,2,3
u(x, 0) = go(xk ), xx € €,
Generalized summation-by-parts (SBP) operator (Del Rey Fernandez, JCP 2014)

o Satisties discrete analogue of integration-by-parts

D=P'Q, P=PT, £PE>0, €20

Q' =8-Q. B =bb! —b b’
o (Generalization
b_; =(1,0,0,...,0)" b= (% —%%—5—60 ,,,,, 0)
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Numerical Scheme Details

Entropy stable cell-centered high-order finite difference
u + P 2Qo Fll =P g™

> Complementary grid enables us to recast gradient form to flux form xo X |
° Important for entropy stable WENO flux (Fisher 2013)
fw, =P '2QoFll=P"'Af mmmp  u +P 'Af=p g™ X

> Entropy stable two-point nonlinear flux
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° Similar to finite volume and satisfies telescoping flux property

° Benefits of cell-centered approach

o Stronger coupling across multi-block interface

° Better shock capturing

Pii = Xir1 — Xi
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Generalized Entropy Stable Interface Penalty
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Two-domain finite difference in flux form

u, + PIAF = pight

f
L] .
fr

271 7-1

| _IwR WLT  1wR wRT
b7 by b2 b7,

Af=(Q+G)

I
[
Q)
h
o
—
@
| —
|
=
=
T
=3
—T
N
|—
=
h
=
>
H

Generalized entropy stable interface penalty
gt = {(blLblLT of(wu)— blLbl_le of (u, ll))
_%be|A|RT (b2 w -] w)}
(-BEBE o ww) + BE K o (u,w)

1
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Shock Capturing Method: Weighted Essentially Non-Oscillatory

Entropy stable WENO (Fisher and Carpenter, JCP 2013)

s =1 =1
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> Entropy stability condition is satisfied with entropy stable WENO

Wi —w) (F5Y =5y <0, 0<i<N-1,

WENO across multi-block interface A

° Cell-centered SBP operator gives a strong coupling between blocks
o WENO target flux, weight, candidate stencil based on non-dissipative interface operator

> Need a different biasing due to larger stencil width
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| Multi-Block Shock Capturing WENO: | D Shock Examples
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(b) Density close up near the contact discontinuity
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Density

Strong Shock Across Interface: Woodward Colella
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Turbulence and Shocks Have Different Characteristics

Our observations so far...

| w

Cell-centered high-order finite difference

> Non-dissipative
o Can’t handle shocks

Shock capturing method: WENO
° Dissipative

> Destroys turbulent structures

N/

Solution: Hybrid scheme
> Blend CCHOFD and shock capturing method

° Non-dissipative + Handle shocks

> Shock sensor (Larsson, CTR 2011)

o Activate shock capturing method when

—V-V>maX(A\/a)-a), B%) where A > 1, B<1



Turbulence Dissipation Characterization

Taylor Green vortex
° 3D periodic domain [-0L < (xy,2) <L

o Initial condition

M =0.1 Re=1600

xy,z0)=1.0
%y.20) i S - 3
R y z
u(x,y,z0)=\Wsin — cos = cos —
Ligg Lose L g
VX . vy VZ
v(x,y,z0)=-Wcos — sin -~ cos —
w7 L L L
w(x,y,z0)=0
v /e Joses [ .
(x 0)—10+V—A/’§ on X romm Y gom 24P
e RRT: L L L !

o Benchmark schemes
o Cell-centered HOFD
o Hybrid cell-centered HOFD

° Assess multi-block capability

Vorticity visualization using cell-
centered HOFD 643




Quantitative Evaluation of Cell-Centered HOFD

Turbulence dissipation characteristics
o DNS: 5127 spectral method

° Cell-centered HOFD and Hybrid WENO: demonstrate multi-block structured mesh
> Popular CCFV : Subbareddy and Candler low dissipation method Mach sensor
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| Where We Are Headed

Toward full high-fidelity simulations of 3D turbulent compressible flows
° Low-dissipation
> Shock capturing

° Hybrid framework in multi-block structured configuration
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Future Works

Demonstrate full scale multi-block LES/DNS with generalized interface penalty

Improve shock capturing scheme
° Interface WENO stencil biasing

o Develop a robust alternative shock capturine scheme, e.o. artificial viscosit
p p g , €.& y

Improve hybrid scheme
> Improved shock sensor to detect shocks better

o Investigate an alternative hybrid scheme that treats under-resolved and well-resolved flow regions differently
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Method Verification

1D Euler MMS

o Initial condition

° Error convergence

h

Single block
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27 sin(rx)(cos(mx) + 2)
nsin(zx)(cos(zx) + 2)(2R + 3 cos(nx) + 6)
nsin(mx)((cos(mx) + 2)*(3c, + 2 cos(nx) + 4),

Rate

128
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u = (p, pu, pE)"

(o,u, T) = (2 + cos(mx),2 + cos(mx),2 + cos(mx)),

2

f = (pu, pu* + p, puH)"

Two blocks
2N h ‘ e(p) Rate ‘ e(u) Rate ‘ e(T) Rate
32 | 5.88E-02 | 9.03E-03 3.92E-02 3.51E+00
64 | 3.03E-02 | 3.57E-04 4.87 | 1.22E-03 5.23 | 3.63E-01 3.42
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512 | 3.89E-03 | 1.35E-07 3.98 | 4.36E-07 4.01 | 1.27E-04 3.98




Shu Osher

Interaction of a strong shock and a standing entropy wave fluctuation
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| Woodward Colella
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2D Sod Shock Tube

Single-block and multi-block comparison

° Domain [-1<(xy)<1]
\ .
(v, p) = (1,0,0,1), if r <0.4

(0.125,0,0,0.1), ifr > 04,

o Initial condition
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Entropy Stable Cell-Centered High-Order Finite Difference

Entropy stability
> Entropy stability analysis

u; + fx = O
wiu, +w f,u, =0 where w! = Su
St + Fx = O
> Global entropy consistency
J N N ) )
E]_TPS + Z Z bl,kbl,lF(Ul; uk) — b_l,kb_l,lF(ul, uk) =0
k=1 1=1
d _ _ . - o
U PS+Fl—F|l =0 SBP is satisfied

> Entropy stable condition (Fisher, JCP 2013)

wiAF > wl AP,
o Locally satisfy entropy stability condition

(Wis1 = W) £ (Wis1, ;) = Y1 —



Generalized Entropy Stable Interface Penalty

Entropy stability

d _ _ _ _ .
EITPS = Frl-1 — FLlo) + Frl+) — Frl-1 +w' g™

_ ) |
—Frl) + Frlgy + W7 (bfbfT o f(u,w) ~ bIBX o f(u,w) — SHIRIAIRT (bt w bR/ w))
—w (—bR bL” o f(wu) + bR bX" o f(u,u) — ~bFR|ART (bRTW _ bLTw)) ~0
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T Ly.RT 1 L T (LT RE
Wy =Wl + W' |=bIDE] o f(w W)~ SH{RIAIR (bt w - %[ w)

1
+w! (b’flblﬂ o f(uw) + S RIA[RT (b?f w— blLTw>) -0

1 1
W' (bb" o f(uw) + TBFRIAIRY (b7 w - bfTW)) - (blLblflT > H(u ) + FERIAIRT (b w b W))
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| Shock Capturing Method: Artificial Viscosity

Artificial viscosity method (Shakib, 1991)

o Formulated using entropy variables

o @wTwaw P e o ov of
u - ¢ + (wxi)Tgiqu(WXj) ’ ref h ’ B aV a.Xk a.Xk
= ou
-1 av ~
Pk Akfk = Z),-g,-j %,uﬂjw

= 0
pk_lAkfl?d — D2|A| a_u@2w where 2)2 — AAT
w
o CCHOFD requires artificial dissipation due to lack of dissipation

° Design issues and concerns
° Artificial dissipation introduces extra dissipation even in freestream regions

> Shock sensor type adaptive mechanism is utilized to reduce dissipation

I D e



| 2D Curvilinear Problem

0.15 x
Blottner cylinder QN
o Perfect gas law 0.10-
° Sutherland viscosity
° Inflow conditions ] il
M =50 Re=1.8875x%x10
Property Value i 0.00 f:_:: d=0.127m
Density, p [kg/m’] | 8.788 x 1072 " gegee
Velocity, u[m/s] 871.47
Temperature, T[K | 75.85 -0.05
2 GﬂdS -0.10 2%, !
° 50x50 Wil
° 100x100 -0.15

- T .
-0.100 -0.050

o 200x200 X-Axis




Curvilinear Multi-Block Shock Capturing : Artificial Viscosity

Qualitative comparison
o 2nd order cell-centered finite volume with implicit time stepping
° Minmod limiter

o 3t grder cell-centered finite difference with explicit time stepping

o Artificial viscosity

100x100 mesh in 2-block configuration
(longitudinal split)




Quantitative Comparison Multi-Block Capability

Wall heat flux prediction

o 20d grder cell-centered finite volume and 3t order cell-centered finite difference

o FV 200x200 result close to reference

> FD 200x200 did not converge due to instability associated with AV near outflow boundary

> Multi-block and single block results converge
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| Entropy Stable Cell-Centered High-Order Finite Difference

Cell-centered summation-by-parts operator
° (2-4-2) operator: third-order

35 3521 5 4
b == -2 _=0...
1 (16’ 1616 16" ’O)

) 433 95 451 367 367 451 95 433
7) = dla‘g 9 b -4 b 17 L] 1, b 9 b x’
384 128 384 384 384 384 384 384
1225 6695 4097 359
A B A
1536 T 512 512 1536 0 0 0
313 35 _ 441 333 _ L 0 0
1536 512 512 512 12
Q=|_9 115 _33 23 2 _1 g ;
512 1536 512 512 3 12
1 2 2 1
0 0 5 -3 0 5 -3



Numerical Approach

Cell-Centered Entropy Stable High-Order Finite Difference

° Extension to conventional/Node-centered scheme introduced by Fisher 2013

> Entropy stable non-dissipative base scheme

o High-order accurate: 3' order or better

> Shock capturing method: Weighted Essentially Non-Oscillatory, artificial viscosity
> Multi-block capable

Numerical Scheme

Nonlinear

Consistency Stability

Conservation

i



