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Motivation

Q. Why are we interested in microstructural variations in
graphite electrodes?

Fast charging or long-term cycling
1s negative electrode limited.

Graphite is one of the most used
anodes in Li-1ion batteries to date.

Many varying particle morphologies
in graphite.




Objective

Research Questions

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344.



Graphite Anodes

Numbered Electrodes

Ia IIa IIIa IVa
Ib I1b I1Ib IVb
Ic Ilc IIIc IVc

Where a, b and ¢ denotes three samples taken from one commercial sheet

Named Electrodes

Litarin Tesla SamsungE35 | Samsung 25R6 | GCA400 GCA2000

All electrode data is open source provided by Vanessa Woods group from
ETH Zurich

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344. and Pietsch, P. et al. Sustainable Energy and Fuels, 2018, 2(3), 598-605



Methodology

Q. How are structures acquired?

Stacks of images are acquired

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344.



Methodology

Q. How are structures acquired?

Stacks of images are acquired
Greyscale images are binarized to black and white
These can then be made into a two-phase 3D structure

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344.



Methodology

Q. What can these structures tell
us?

These structures can provide:

1. Porosity
2. Tortuosity
3. Conductivity

4. Surface Area



Methodology

C=1
C=0
y
Tortuosity
V2c =0
Boundary Conditions
Clx=0)=0 Cx=1L,)=1
Four planes (y=0, z=0, y=L,, z=L,)
aC 5
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Mistry, A. et. al. ACS Appl. Mater. Interfaces, 2018, 10, 6317-6326.



Methodology

¢=1
¢=0
y
Conductivity
Boundary Conditions
p(x=0)=0 px =1Ly) =1
Four planes (y=0, z=0, y=L,, z=L,)
do 0
on

Mistry, A. et. al. ACS Appl. Mater. Interfaces, 2018, 10, 6317-6326.



Methodology

Pietsch, P. et. al. Sustainable Energy Fuels, 2018, 2, 598-605. 10



Methodology

Pietsch, P. et. al. Sustainable Energy Fuels, 2018, 2, 598-605. 11



Methodology
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Methodology

Visual convergence of
values as sub-domain size
1ncreases.
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tortuosity

This value can then be
y used to probe spatial
variability.

| | |
10 20 30 . . 40 50
sub-domain size

tortuosity variability in Illa

Coker, D. A. et. al. Journal of Applied Physics, 1995, 77(12), 6087-6099. 13



Q. How

y - direction (um)

Variability Within an Electrode

can variability be quantified?
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Higher local regions of effective
properties can be seen in every
electrode.
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Variability Within an Electrode

Q. How can variability be quantified?

In the limat,
e — 100%
T— 1

|
27 30 33 36
porosity

tortuosity variability in Ilc
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Variability Within an Electrode

Q. How can variability be quantified?
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Variability Within an Electrode

\
B %ﬁ o
Yoy Og
NS
—~—é._ *_,08
=




Variability Within an Electrode

Dewviation, 6

15

10

tortuosity

porosity

tortuosity variability in Ic

Individual 6 values for
each point

Tmeasured — Tfitted

Tritted

These normalized points
now act as another data
point

This can be seen as the
internal RVE variability.
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Particle Characterization

By implementing a 3D Sobel operator we can apply this to three dimensions for
our particles.

1 2 1 0 0 0 -1 -2 -1
2 4 2 0 0 0 -2 -4 -2
1 2 1 0 0 0 -1 -2 -1
h,(:,:,—1) h,(:,:,0) h,(:,:,1)
G, =h, *1
G,

G

Gmag = |G3+GE+ Gz ¢ =arctan-—— 6 = arctan | 2
mag \/y X Z G£+G§ darctan Gx
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Particle Characterization

By varying ellipsoid parameters we can find reference particles to help describe the

electrode.
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Particle Morphology Effects

Q. How does differing morphologies
influence effective properties?
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Particle Morphology Effects

o= (1—-¢€)1 T=¢P

In-plane
dqinant

Through-plane dominant
| | | |

Through-qlane dominant

1 2 3
|y through-plane

2 3 4 5 6 0
qthrough—plane

Many electrodes show varying degrees of anisotropies
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Particle Morphology Effects

tortuosity

Q. What causes these variations in delta?

|
36 _
porosity

33 39

tortuosity variability in Illa

A directional correlation and

proportionality to % 1s observed.

42

tortuosity

Electrode 61y 61_2
1I1c 0.0331 0.0331 0.0543
IVb 0.0586 0.0602 0.1812
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Particle Morphology Effects

0T
Se represents the slope of the

tortuosity at a given porosity value of
the designated curve.

T — tortuosity
€ — porosity

0T _ _ p — exponential to curve fit
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Particle Morphology Effects

—
i $ > More anisotropic particles lead

to higher delta values

5T .
5 — mean deviation of RVEs ‘g‘ — mean magnitude of slope
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Particle Morphology Effects

| |
( The sensitive nature of the platelet like
particles is mirrored in the delta
C reliance plot (below).

Porosity is held constant in every case.
* With small changes in particle
locations large tortuosity changes are
seen.




Conclusion

» Successful screening method that can compare a multitude of
morphologies without segmenting particles.

« Many morphologies exhibit anisotropy given varying morphologies.

* Internal RVE tortuous dispersion can arise from particle morphology
where as conductivity does not show the same.
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