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Motivation

Q. Why are we interested in microstructural variations in
graphite electrodes?

Fast charging or long-term cycling
is negative electrode limited.

Graphite is one of the most used
anodes in Li-ion batteries to date.

Many varying particle morphologies
in graphite.
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Obj ective

Research Questions

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344. 3



Graphite Anodes

Numbered Electrodes

Ia IIa IIIa IVa

Ib IIb IIIb IVb

Ic IIc IIIc IVc

Where a, b and c denotes three samples taken from one commercial sheet

Named Electrodes

Litarin Tesla SamsungE35 Samsung 25R6 GCA400 GCA2000

All electrode data is open source provided by Vanessa Woods group from
ETH Zurich

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344. and Pietsch, P. et al. Sustainable Energy and Fuels, 2018, 2(3), 598-605 4



Methodology

Q. How are structures acquired?
_ .. _ _,_ _____ _ 

iir--_7- — -9.' 
.1114"..L..ANC- -

I.-.'

V..%.-...7-1' 
'1:[....,___

_ - -

...--

- 
..r _.... r....4rim_. _...0. _ 

____-7h _ai.—

_..............___  ,...:: 
- 

Nam-........;r7...7..- ..._'''

... .../F.- --/". ....•ft.... -.M461Z r..-..;...----.. --74;•- ''

1---..i f___....707111r. „.

-- ,Ar--- ,fto .UP' ...11L ..

/or

- .'- --MMI.7.7. _ ... fa. -41M ..111.•

'4011fr 

,

-...1: ar - -, 4:-.- ..- akt- -
_ 1631 - - _ -- --..- - .:$01̀- —

--31e----e- 'ir----Ar---

_ --
__.-__ ___-- _.-----.;.71111c, -----'-,..,-----m—___ - _...,

---ma- Ali.---_,..-- as-
---..=-_-_--  -- -.........___- ii...,_ .-z.....m.--

C-- -01M7---Ta.
..- -... __ -"pc_ -- --.E.

_ --.....,__ _ -IF - - --gra- =Ilr-gt w..:::...., -71 ______---- --.•---,-"°-
-IV ----....y-

...mL  -_:wamaip..... --',1-' -- - jt----"--*--*-4.4r- - I"-

- ',..,.. __ — -;41C.--- 1.111I
- .--0111L.....-'"- .. Ai, ,., —.1.-AL"-.Maa -.-- -10.2.1.1C..w..

- -4['' -11L --=.-

- •••

111P‹.-- 
=maw—_

_
_ -

- -
AML_

-•- - —

Stacks of images are acquired
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Methodology

Q. How are structures acquired?

Stacks of images are acquired

Greyscale images are binarized to black and white

These can then be made into a two-phase 3D structure

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344. 6



Methodology

Q. What can these structures tell
us?

These structures can provide:

1. Porosity

2. Tortuosity

3. Conductivity

4. Surface Area
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Methodology

Q. How to find tortuosity?

C 0

Tortuosity
v 2 c = o

C = 1

Boundary Conditions
C(x = 0) = 0 C(x = Lx) =1

Four planes (y=0, z=0, y=Ly, z=L)
a c= o
an

z

A

x
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Methodology

Q. How to find conductivity?

co = 0

Conductivity
V • (o-Vgo) = 0

Boundary Conditions
co(x = 0) = 0

Four planes (y=0, z=0, y=Ly, z=Lz)
aco
Tri = 0

co = 1

co(x = Lx) = 1

z
•

x

Mistry, A. et. al. ACS Appl. Mater. Interfaces, 2018, 10, 6317-6326. 9



Methodology

Q. How to probe variability?
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Methodology

Q. How to probe variability

z

♦

Pietsch, P. et. al. Sustainable Energy Fuels, 2018, 2, 598-605.



Methodology

■

sub-domain size (µm)

X

12Pietsch, P. et. al. Sustainable Energy Fuels, 2018, 2, 598-605.



Methodology

5

4

110

X
a • •

mr--...z.......,m,s............

o
Y

1
20 30 . . 40 50
sub-domain size

tortuosity variability in IIIa

Visual convergence of
values as sub-domain size
increases.

Choosing the smallest
value where visual
convergence occurs among
all nodes.

This value can then be
used to probe spatial
variability.
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Variability Within an Electrode

Q. How can variability be quantified?

I
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Higher local regions of effective
properties can be seen in every
electrode.
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Variability Within an Electrode

Q. How can variability be quantified?
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Variability Within an Electrode

Q. How can variability be quantified?

1

30 . 33
porosity

conductivity variability in IIc

36

In the limit,

e —> 0%

0 /0bulk —> 1

e —> 100%

0 / obulk —> 0



Variability Within an Electrode
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Variability Within an Electrode

Deviation, 6
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These normalized points
now act as another data
point

This can be seen as the
internal RVE variability.

tortuosity variability in Ic
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Particle Characterization

By implementing a 3D Sobel operator we can apply this to three dimensions for
our particles.

1 2 1

2 4 2

1 2 1

h,(: ,: , —1)

Gmag =  q + q + q

0 0 0

0 0 0

0 0 0

h,(: ,: , 0)

G, = h, * 1

$1) = arctan
7 G,

v\lq. + G3)

-1 -2 -1

-2 -4 -2

-1 -2 -1

h,(: ,: ,1)

0 = arctan (—GY)
Gx
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Particle Characterization
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By varying ellipsoid parameters we can find reference particles to help describe the
electrode.
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Particle Morphology Effects

Ia

IVa

Q. How does differing morphologies
influence effective properties?
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Particle Morphology Effects

= (1 -

In-plane dominant

Through-plane dominant

0 1 2 3 4

CI-through-plane

5 6

3

2

1

T = E —P

1 2

Pthrough-plane

Many electrodes show varying degrees of anisotropies

3
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Particle Morphology Effects

Q. What causes these variations in delta?
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1
33 36 39

porosity

tortuosity variability in IIIa

42

A directional correlation and

proportionality to cY is observed.

Electrode sTx åTy 6TZ

IIIc 0.0331 0.0331 0.0543

IVb 0.0586 0.0602 0.1812
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Particle Morphology Effects

00 or

SE phi •
ct •

.
MMIENCE;  
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29 33. 37
porosity

ST
—
SE 

represents the slope of the

tortuosity at a given porosity value of
the designated curve.

—> tortuosity
T = E—P

E —> porosity

(ST
= _pE P 1 p —> exponential to curve fit

6E
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Particle Morphology Effects
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Particle Morphology Effects

Porosity is held constant in every case.
• With small changes in particle

locations large tortuosity changes are
seen.

The sensitive nature of the platelet like
particles is mirrored in the delta
reliance plot (below).

102
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Conclusion

• Successful screening method that can compare a multitude of
morphologies without segmenting particles.

• Many morphologies exhibit anisotropy given varying morphologies.

• Internal RVE tortuous dispersion can arise from particle morphology
where as conductivity does not show the same.
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