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Xenon isotopes used for nuclear detonation detection

Nuclide 131mXe 133n1Xe 133Xe 135Xe

Fission Yield per kT Pu (Bq) 5 x 109 2 x 1013 2 x 10'4 2 x 1016

Half-life (days) 11.93 2.19 5.25 0.38

y Ray (keV) 163.9 233.2 81 249.8

X-rays (keV) 29.5-34.6 29.5-34.6 30.6-36.0 30.6-36.0

f3 Endpoint (keV) 346 905

Conversion electron (keV) 129 199 45 214
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Isotopic ratios can distinguish nuclear
detonations from medical isotope
production and reactor operations
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Airborne radionuclide detection by the IMS

Source terms and events:

• Nuclear reactors

• Fukushima accident

• Medical isotope production facilities

• Nuclear testing in North Korea

Detection of noble gas radioisotopes by IMS

monitoring systems

• 131mXe, 133Xe, 133mXe, 135Xe

• Completely automatic commercial systems

• 12-hr collection, followed by 12-hr count

"Real-time" detection (<_ 30 min) advantages:

• Time—resolved isotope concentrations

• Trigger system for other detectors

• Lower-yield detection threshold
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Metal-Organic Frameworks (MOFs) have well-known ability to
adsorb noble gases

• Thousands of MOFs are known

• Ultrahigh surface areas (record is

7000 m2/g) enable

preconcentration of noble gases

• Selective gas uptake due to
tailorable pore size/chemical

environment

o Uptake of Kr, Xe, and Rn is a

factor of 6X higher than N2

• Stable in air to 200 °C; allows
fast sorbent regeneration
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Although many MOFs have high uptake and selectivity for Xe,
most are not luminescent

MOF

CaSDB (SBMOF-1)

Xe Uptake
(mmol g-1 or mmol

1.48 (13.2)6

Xe Q,t (kJ mol-1)

35

Xe/Kr Selectivity

16°

SBMOF-2 2.068 26.4 10`

Ni-MOF-74 4.198 (4.8)b 22

Co3(HCOO)6 2' 28 12d

HKUST-1 3.3° 26.9 8.4e (3)b

MOF-5 1.988 15

FMOF-Cu 0.88 15 2f

MFU-4I 1.8a 20 4.7e

MOF-505 2.2g 8g

SIFSIX-3-Ni 2.51° 18.9

SIFSIX-3-Fe 2.45° 27.4

CROFOUR-1-Ni 1.8g 37.4 22'

CROFOUR-2-Ni 1.6a 30.5 15.5`

Ul0-66 1.58° 3.8

PCN-14 7.18 17.9 6.5

NOTT-100 6.1° 18.6 6.7J

NOTT-103 4.18 19.7 5.5d

ZIF-8 1.9

[Zn(tmz)2] 3° 23 15.51

MOF-74 Mg 5.588 5.92

MOF-74-Co 6.1° 10.37

MOF-74-Zn 3.888 5.76

Porous Organic Cages, Carbons, and Covalent-Organic-Framework-like Materials

Noria 1.55' 24.5-26.9 9.4g'b

CC3 2.28 (11)6 31.3 20.48 (1 6)b

COP-4 1.78 1.5

Activated Carbon 4.2° 8

Ca rbon-Zx 4.42°

Ca rbon-Z 3.178

D. Banerjee et al. Chem. 4 (2018), 466-494
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Basics of radiation detection using organic scintillators

Typical luminescent MOF linkers have fused aromatic rings, similar to

conventional organic scintillators
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We developed design principles for MOF-based Scintillators

• Use closed-shell metal cations

• E.g., Zn or Cd

• No MOFs with open metal sites

• Avoid non-rigid linkers with non-

radiative pathways

• Adopt rigid framework topologies

• Electronically isolate linkers
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The high surface areas of MOFs and other nanoporous sorbents enable them to
uptake more gas than an empty volume
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MOF "excess capacity" due to ultrahigh surface areas produces

dramatic concentration enhancements

Experiments: Pure component 

• 40.8 mg of NU-1101
• High surface area: 4400 m2g-1

• Packing density: < 30%

• Use Kr as a surrogate for Xe radioisotopes

• 85Kr (1 Bq/m3 in air) as surrogate for short-

lived Xe isotopes

Modeling: Gas mixtures

• Simulated air Kr/Xe/N2 mixtures at 298 K

• 176x106 steps due to the low gas
concentrations 4 required weeks due to
poor statistics at such low pressures

4 Predicted concentration increase

factors relative to mixture at STP:

Kr: "200X — 1500X
Xe: 3,500X 23,000X G
a
s
 C
o
n
c
e
n
t
r
a
t
i
o
n
 (
m
o
l
/
m
3
)
 

200

.c 150

eN,
(.-) 100

u 50

0

0 100 200 300 400

Kr pressure/psi
500 600

0.09

0.08

0.07

100 bar N2, 1.1 ppm Kr, 0.09 ppm Xe
■

• Kr

•Xe •
0.06 • •

0.05
••

•
0.04

• • •• II •
••

•••

0.03
•

0.02
•
• •

•
•

0.01 • • •
•

0.00
0 5 10 15

MOF ID

9



Real-time plume detection

Simulated plume of 1 Bq/m3 above background, 30 Min duration

1

H

10 —

o

Onset of plume (t=0)

3 0 minute running average

2.5

20. 1.5
c..)

0.5

0 200

r r

t = 12 min

r

0 Average

Mean background

---4 sigma

0 1oo

400 600
Minute

800 1000

10

1 :
. I



High-pressure gas cell for testing detection concept

APDs for beta
detection

Scintillating
MOF

GAS PORTS, X2

5.0-cm Nal detectors
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Scale drawing of the thin-window cell, showing location of the detectors and the
scintillating MOF. The volume is scalable using a series of internal bushings.
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Coincidence detection reduces threshold and discriminates
background events eliminates need for extensive shielding
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• Muons are the main background detected in
the laboratory

• Sorbent bed is insensitive to due to low
mass (500 mg/cm2) and atomic number

• Nal attenuates y and provides muon veto
shield
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Detection of 0 particles from 85Kr using Zr(NDC) as scintillating MOF

Pulse from radioisotope
introduced for trigger setup

6

5

85Kr as surrogate for short-lived
2 4

Xe isotopes ci_
o
3

• f3 emitter

• Half life 10.8 years

• — 1 Bq/m3 in air
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f3 signals +
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Signal:background ratio determined to be 86 at 1 bar pressure, sufficient to
detect the isotope
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Correlated (3/y events from 85Kr using Zr(NDC) as
scintillating MOF

Demonstrates detection of rare
events in laboratory background

• Low branching ratio and i

• 48 hour acquisition time

• Isotope ID by energy and timing

5.0 cm Nal gamma detector

Expected rate of gamma detection
window transmission 0.88

solid angle / 47c 0.165

absorption efficiency 0.82

PE/total 0.47 

photopeak efficiency 0.055722

Branching ratio 0.004

gammas detected per beta 0.000223

beta activity

gamma rate

2  Bq

0.000446 /s

1.604792 /hr

100

1

Timing distribution for correlated events

Double-scattered y

H

13/y events
Known decay time

-2. x 10-6 O. 2. x10-6

Seconds
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Simulated radioxenon counting

Simulation assumes:
• Activity enhancement of 20,000 (for Xe)
• Detector scaled for 10 cpm background
• 1 Bq m-3 background
• 1 Bq m-3 plumes of varying width
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Conclusions

■ MOFs possess a unique combination of properties that
make them useful for detecting noble gas isotopes

■ Scintillation

■ Selective uptake over majority atmospheric components

■ Detection of f3 and y particles was demonstrated using a
surrogate for short-lived Xe isotopes

■ Scintillating MOFs show potential to replace conventional

porous carbons and allow rapid detection of trace gases
resulting from nuclear detonations
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