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Xenon isotopes used for nuclear detonation detection

Nuclide 131mXe 133m¥e 133Xe 135Xe
Fission Yield per kT Pu (Bq) 5x 10° 2 x 1013 2 x 1014 2 x 106
Half-life (days) 11.93 2.19 5.25 0.38

v Ray (keV) 163.9 233.2 81 249.8
X-rays (keV) 29.5-34.6 29.5-34.6 30.6—-36.0 30.6—-36.0
B Endpoint (keV) - - 346 905
Conversion electron (keV) 129 199 45 214
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Airborne radionuclide detection by the IMS
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Metal-Organic Frameworks (MOFs) have well-known ability to
adsorb noble gases

 Thousands of MOFs are known

. . ZIF-8 PCN-14 HKUST-1 IRMOF-1
» Ultrahigh surface areas (record is ; Pt X .

7000 m?2/g) enable
preconcentration of noble gases

* Selective gas uptake due to
tailorable pore size/chemical
environment
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Although many MOFs have high uptake and selectivity for Xe,

most are not luminescent
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Basics of radiation detection using organic scintillators

Typical luminescent MOF linkers have fused aromatic rings, similar to
conventional organic scintillators
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We developed design principles for MOF-based Scintillators

Use closed-shell metal cations

= E.g.,ZnorCd Zn,0(0,CR);, ‘
= No MOFs with open metal sites

= Avoid non-rigid linkers with non- HO,C
radiative pathways COZH ‘

NDC

J. ). Perry et al. J. Mater. Chem. 2012, 22, 10235



The high surface areas of MOFs and other nanoporous sorbents enable them to
uptake more gas than an empty volume

Grand Canonical Monte Carlo simulations
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MOF “excess capacity” due to ultrahigh surface areas produces
dramatic concentration enhancements
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Experiments: Pure component MOF: NU-1101
* 40.8 mg of NU-1101 runl, run2
* High surface area: 4400 m2g!

* Packing density: < 30%

* Use Kr as a surrogate for Xe radioisotopes
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Real-time plume detection

Simulated plume of 1 Bq/m?3 above background, 30 Min duration
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High-pressure gas cell for testing detection concept
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Coincidence detection reduces threshold and discriminates
background events — eliminates need for extensive shielding

muon , * Muons are the main background detected in

g, ] the laboratory
Sorbent/APDs

* Sorbent bed is insensitive to Y due to low
mass (500 mg/cm?) and atomic number

Nal/PMTs &

* Nal attenuates y and provides muon veto
shield



Detection of B particles from 8°Kr using Zr(NDC) as scintillating MOF
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Correlated B/y events from 3°Kr using Zr(NDC) as

scintillating MOF

Demonstrates detection of rare
events in laboratory background

 Low branching ratio and n
* 48 hour acquisition time

« Isotope ID by energy and timing

5.0 cm Nal gamma detector

Expected rate of gamma detection

window transmission 0.88
solid angle / 4n 0.165
absorption efficiency 0.82
PE/total 0.47
photopeak efficiency 0.055722
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Simulated radioxenon counting

Simulation assumes: Enhancement (by MOF and high pressure)

e Activity enhancement of 20,000 (for Xe) enables compact detector geometry
e Detector scaled for 10 cpm background 50cm__ 2.5cm

* 1Bqg m3 background
g 06

e 1Bqg m3 plumes of varying width
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Conclusions

= MOFs possess a unique combination of properties that
make them useful for detecting noble gas isotopes
= Scintillation
= Selective uptake over majority atmospheric components

= Detection of B and y particles was demonstrated using a
surrogate for short-lived Xe isotopes

= Scintillating MOFs show potential to replace conventional
porous carbons and allow rapid detection of trace gases
resulting from nuclear detonations
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