
P1673R0: A free function linear algebra interface based on the BLAS
Authors
* Mark Hoemmen (mhoemme@sandia.gov) (Sandia National Laboratories)
* David Hollman (dshollm@sandia.gov) (Sandia National Laboratories)
* Christian Trott (crtrott@sandia.gov) (Sandia National Laboratories)
* Daniel Sunderland (dsunder@sandia.gov) (Sandia National Laboratories)
* Nevin Liber (nliber@anl.gov) (Argonne National Laboratory)
* Siva Rajamanickam (srajama@sandia.gov) (Sandia National Laboratories)
* Li-Ta Lo (ollie@lanl.gov) (Los Alamos National Laboratory)
* Graham Lopez (lopezmg@ornl.gov) (Oak Ridge National Laboratories)
* Peter Caday (peter.caday@intel.com) (Intel)
* Sarah Knepper (sarah.knepper@intel.com) (Intel)
* Piotr Luszczek (luszczek@icl.utk.edu) (University of Tennessee)
* Timothy Costa (tcosta@nvidia.com) (NVIDIA)
Contributors
* Chip Freitag (chip.freitag@amd.com) (AMD)
* Bryce Lelbach (blelbach@nvidia.com) (NVIDIA)
* Srinath Vadlamani (Srinath.Vadlamani@arm.com) (ARM)
* Rene Vanoostrum (Rene.Vanoostrum@amd.com) (AMD)
Date: 2019-06-17
Purpose of this paper
This paper proposes a C++ Standard Library dense linear algebra
interface based on the dense Basic Linear Algebra Subroutines (BLAS).
This corresponds to a subset of the [BLAS
Standard](http://www.netlib.org/blas/blast-forum/blas-report.pdf).
Our proposal implements the following classes of algorithms on
matrices and vectors:
* Elementwise vector sums
* Multiplying all elements of a vector or matrix by a scalar
* 2-norms, 1-norms, and infinity-norms of vectors
* Vector-vector, matrix-vector, and matrix-matrix products

(contractions)
* Low-rank updates of a matrix
* Triangular solves with one or more "right-hand side" vectors
* Generating and applying plane (Givens) rotations
Our algorithms work with most the matrix storage formats that the BLAS
Standard supports:
* "General" dense matrices, in column-major or row-major format
* Symmetric or Hermitian (for complex numbers only) dense matrices,

stored either as general dense matrices, or in a packed format
* Dense triangular matrices, stored either as general dense matrices
or in a packed format

Our proposal also has the following distinctive characteristics:
* It uses free functions, not arithmetic operator overloading.
* The interface is designed in the spirit of the C++ Standard Library's

algorithms.
* It uses the multidimensional array data structures [-basic mdspan-

(P0009R9)](http://wg21.1ink/p0009) and [-basic mdarray-
(P1684RO)](https://isocpp.org/files/papers/P1684RO.pdf) to represent
matrices and vectors. In the future, it could support other
proposals' matrix and vector data structures.

* The interface permits optimizations for matrices and vectors with
small compile-time dimensions; the standard BLAS interface does not.

* Each of our proposed operations supports all element types for which
that operation makes sense, unlike the BLAS, which only supports
four element types.

* Our operations permit "mixed-precision" computation with matrices
and vectors that have different element types. This subsumes most
functionality of the Mixed-Precision BLAS specification (Chapter 4
of the [BLAS
Standard](http://www.netlib.org/blas/blast-forum/blas-report.pdf)).

* Like the C++ Standard Library's algorithms, our operations take an
optional execution policy argument. This is a hook to support
parallel execution and hierarchical parallelism (through the
proposed executor extensions to execution policies, see
[P1019R2](http://wg21.1ink/p1019r2)).

* Unlike the BLAS, our proposal can be expanded to support "batched"
operations (see [P1417R0](http://wg21.1ink/p1417r0)) with almost no
interface differences. This will support machine learning and other
applications that need to do many small matrix or vector operations
at once.

Interoperable with other linear algebra proposals
We believe this proposal is complementary to
[P1385R1](http://wg21.1ink/p1385r1), a proposal for a C++ Standard linear
algebra library that introduces matrix and vector classes and
overloaded arithmetic operators. In fact, we think that our proposal
would make a natural foundation for a library like what P1385R1
proposes. However, a free function interface -- which clearly
separates algorithms from data structures -- more naturally allows for
a richer set of operations such as what the BLAS provides. A natural
extension of the present proposal would include accepting P1385's

SAND2019-6877C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

matrix and vector objects as input for the algorithms proposed here.
Why include dense linear algebra in the C++ Standard Library?
1. C++ applications in "important application areas" (see

[P0939R0](http://wg21.1ink/p0939r0)) have depended on linear algebra for a
long time.

2. Linear algebra is like 'sort": obvious algorithms are slow, and the
fastest implementations call for hardware-specific tuning.

3. Dense linear algebra is core functionality for most of linear
algebra, and can also serve as a building block for tensor
operations.

4. The C++ Standard Library includes plenty of "mathematical
functions." Linear algebra operations like matrix-matrix multiply
are at least as broadly useful.

5. The set of linear algebra operations in this proposal are derived
from a well-established, standard set of algorithms that has
changed very little in decades. It is one of the strongest
possible examples of standardizing existing practice that anyone
could bring to C++.

6. This proposal follows in the footsteps of many recent successful
incorporations of existing standards into C++, including the UTC
and TAI standard definitions from the International
Telecommunications Union, the time zone database standard from the
International Assigned Numbers Authority, and the ongoing effort to
integrate the ISO unicode standard.

Linear algebra has had wide use in C++ applications for nearly three
decades (see [P1417R0](http://wg21.1ink/p1417r0) for a historical survey).
For much of that time, many third-party C++ libraries for linear
algebra have been available. Many different subject areas depend on
linear algebra, including machine learning, data mining, web search,
statistics, computer graphics, medical imaging, geolocation and
mapping, engineering, and physics-based simulations.
PDirections for ISO C++" (P0939R0)](http://wg21.1ink/p0939r0) offers the
following in support of adding linear algebra to the C++ Standard
Library:
* P0939R0 calls out "Support for demanding applications in important

application areas, such as medical, finance, automotive, and games
(e.g., key libraries...)" as an area of general concern that "we
should not ignore." A11 of these areas depend on linear algebra.

* "Is my proposal essential for some important application domain?"
Many large and small private companies, science and engineering
laboratories, and academics in many different fields all depend on
linear algebra.

* "We need better support for modern hardware": Modern hardware spends
many of its cycles in linear algebra. For decades, hardware
vendors, some represented at WG21 meetings, have provided and
continue to provide features specifically to accelerate linear
algebra operations. For example, SIMD (single instruction multiple
data) is a feature added to processors to speed up matrix and vector
operations. [P0214R9](http://wg21.1ink/p0214r9), a C++ SIMD library, was
voted into the C++20 draft. Several large computer system vendors
offer optimized linear algebra libraries based on or closely
resembling the BLAS; these include AMD's BLIS, ARM's Performance
Libraries, Cray's LibSci, Intel's Math Kernel Library (MKL), IBM's
Engineering and Scientific Subroutine Library (ESSL), and NVIDIA's
cuBLAS.

Obvious algorithms for some linear algebra operations like dense
matrix-matrix multiply are asymptotically slower than less-obvious
algorithms. (Please refer to a survey one of us coauthored,
["Communication lower bounds and optimal algorithms for numerical
linear algebra."](https://doi.org/10.1017/50962492914000038))
Furthermore, writing the fastest dense matrix-matrix multiply depends
on details of a specific computer architecture. This makes such
operations comparable to 'sort' in the C++ Standard Library: worth
standardizing, so that Standard Library implementers can get them
right and hardware vendors can optimize them. In fact, almost all C++
linear algebra libraries end up calling non-C++ implementations of
these algorithms, especially the implementations in optimized BLAS
libraries (see below). In this respect, linear algebra is also
analogous to standard library features like -random device': often
implemented directly in assembly or even with special hardware, and
thus an essential component of allowing no room for another language
"below" C++ (see notes on this philosophy in
[P0939R0](http://wg21.1ink/p0939r0) and Stroustrup's seminal work "The Design
and Evolution of C++").
Dense linear algebra is the core component of most algorithms and
applications that use linear algebra, and the component that is most
widely shared over different application areas. For example, tensor
computations end up spending most of their time in optimized dense
linear algebra functions. Sparse matrix computations get best
performance when they spend as much time as possible in dense linear
algebra.

The C++ Standard Library includes many "mathematical special
functions" (**[sf.cmath]**), like incomplete elliptic integrals,
Bessel functions, and other polynomials and functions named after
various mathematicians. Any of them comes with its own theory and set
of applications for which robust and accurate implementations are
indispensible. We think that linear algebra operations are at least
as broadly useful, and in many cases significantly more so.
Why base a C++ linear algebra library on the BLAS?
1. The BLAS is a standard that codifies decades of existing practice
2. The BLAS separates out "performance primitives" for hardware

experts to tune, from mathematical operations that rely on those
primitives for good performance.

3. Benchmarks reward hardware and system vendors for providing an
optimized BLAS implementations.

4. Writing a fast BLAS implementation for common element types is
nontrivial, but well understood.

5. Optimized third-party BLAS implementations with liberal software
licenses exist.

6. Building a C++ interface on top of the BLAS is a straightforward
exercise, but has pitfalls for unaware developers.

Linear algebra has had a cross-language standard, the Basic Linear
Algebra Subroutines (BLAS), since 2002. The Standard came out of a
[standardization process](http://www.netlib.org/blas/blast-forum/)
that started in 1995 and held meetings three times a year until 1999.
Participants in the process came from industry, academia, and
government research laboratories. The dense linear algebra subset of
the BLAS codifies forty years of evolving practice, and has existed in
recognizable form since 1990 (see [P1417R0](http://wg21.1ink/p1417r0)).
The BLAS interface was specifically designed as the distillation of
the "computer science" / performance-oriented parts of linear algebra
algorithms. It cleanly separates operations most critical for
performance, from operations whose implementation takes expertise in
mathematics and rounding-error analysis. This gives vendors
opportunities to add value, without asking for expertise outside the
typical required skill set of a Standard Library implementer.
Well-established benchmarks such as the [LINPACK
benchmark](https://www.top500.org/project/linpack/) reward computer
hardware vendors for optimizing their BLAS implementations. Thus,
many vendors provide an optimized BLAS library for their computer
architectures. Writing fast BLAS-like operations is not trivial, and
depends on computer architecture. However, it is not black magic; it
is a well-understood problem whose solutions could be parameterized
for a variety of computer architectures. See, for example, [Goto and
van de Geijn 2008](https://doi.org/10.1145/1356052.1356053). There
are optimized third-party BLAS implementations for common
architectures, like [ATLAS](http://math-atlas.sourceforge.net/) and
[GotoBLAS](https://www.tacc.utexas.edu/research-development/tacc-software/goto
blas2).
A (slow but correct) [reference implementation of the
BLAS](http://www.netlib.org/blas/# reference blas version 3 8 0)
exists and it has a liberal software license for easy reuse.
We have experience in the exercise of wrapping a C or Fortran BLAS
implementation for use in portable C++ libraries. We describe this
exercise in detail in our paper "Evolving a Standard C++ Linear
Algebra Library from the BLAS" (P1674R0). It is straightforward for
vendors, but has pitfalls for developers. For example, Fortran's
application binary interface (ABI) differs across platforms in ways
that can cause run-time errors (even incorrect results, not just
crashing). Historical examples of vendors' C BLAS implementations
have also had ABI issues that required work-arounds. This dependence
on ABI details makes availability in a standard C++ library valuable.
Notation and conventions
The BLAS uses Fortran terms
The BLAS' "native" language is Fortran. It has a C binding as well,
but the BLAS Standard and documentation use Fortran terms. Where
applicable, we will call out relevant Fortran terms and highlight
possibly confusing differences with corresponding C++ ideas. Our
paper P1674R0 ("Evolving a Standard C++ Linear Algebra Library from
the BLAS") goes into more detail on these issues.
We call "subroutines" functions
Like Fortran, the BLAS distinguishes between functions that return a
value, and subroutines that do not return a value. In what follows,
we will refer to both as "BLAS functions" or "functions."
Element types and BLAS function name prefix
The BLAS implements functionality for four different matrix, vector,
or scalar element types:
* -REAL- (-float- in C++ terms)
* -DOUBLE PRECISION- (-double- in C++ terms)
* -COMPLEX- (-complex<float>- in C++ terms)
* -DOUBLE COMPLEX- (-complex<double>- in C++ terms)
The BLAS' Fortran 77 binding uses a function name prefix to

distinguish functions based on element type:
* -S- for -REAL- ("single")
* -D- for -DOUBLE PRECISION-
* -C- for -COMPLEX-
* -Z- for -DOUBLE COMPLEX-
For example, the four BLAS functions -SAXPY-, -DAXPY-, -CAXPY-, and
-ZAXPY- all perform the vector update -Y = Y + ALPHA*X- for vectors
-X- and -Y- and scalar -ALPHA-, but for different vector and scalar
element types.
The convention is to refer to all of these functions together as
-xAXPY-. In general, a lower-case -x- is a placeholder for all data
type prefixes that the BLAS provides. For most functions, the -x- is
a prefix, but for a few functions like -IxAMAX-, the data type
"prefix" is not the first letter of the function name. (-IxAMAX- is a
Fortran function that returns -INTEGER-, and therefore follows the old
Fortran implicit naming rule that integers start with -I-, -J-, etc.)
Not all BLAS functions exist for all four data types. These come in
three categories:
1. The BLAS provides only real-arithmetic (-S- and -D-) versions of

the function, since the function only makes mathematical sense in
real arithmetic.

2. The complex-arithmetic versions perform a slightly different
mathematical operation than the real-arithmetic versions, so
they have a different base name.

3. The complex-arithmetic versions offer a choice between
non-conjugated or conjugated operations.

As an example of the second category, the BLAS functions -SASUM- and
-DASUM- compute the sums of absolute values of a vector's elements.
Their complex counterparts -CSASUM- and -DZASUM- compute the sums of
absolute values of real and imaginary components of a vector -v-, that
is, the sum of -abs(real(v(i))) + abs(imag(v(i)))- for all -i- in the
domain of -v-. The latter operation is still useful as a vector norm,
but it requires fewer arithmetic operations.
Examples of the third category include the following:
* non-conjugated dot product -xDOTU- and conjugated dot product

-xDOTC-; and
* rank-1 symmetric (-xGERU-) vs. Hermitian (-xGERC-) matrix update.
The conjugate transpose and the (non-conjugated) transpose are the
same operation in real arithmetic (if one considers real arithmetic
embedded in complex arithmetic), but differ in complex arithmetic.
Different applications have different reasons to want either. The C++
Standard includes complex numbers, so a Standard linear algebra
library needs to respect the mathematical structures that go along
with complex numbers.
What we exclude from the design
Functions not in the Reference BLAS
The BLAS Standard includes functionality that appears neither in the
[Reference
BLAS](http://www.netlib.org/lapack/explore-html/d1/df9/group blas.html)
library, nor in the classic BLAS "level" 1, 2, and 3 papers. (For
history of the BLAS "levels" and a bibliography, see
[P1417R0](http://wg21.1ink/p1417r0). For a paper describing functions not in
the Reference BLAS, see "An updated set of basic linear algebra
subprograms (BLAS)," listed in "Other references" below.) For
example, the BLAS Standard has
* several new dense functions, like a fused vector update and dot

product;
* sparse linear algebra functions, like sparse matrix-vector multiply

and an interface for constructing sparse matrices; and
* extended- and mixed-precision dense functions (though we subsume

some of their functionality; see below).
Our proposal only includes core Reference BLAS functionality, for the
following reasons:
1. Vendors who implement a new component of the C++ Standard Library

will want to see and test against an existing reference
implementation.

2. Many applications that use sparse linear algebra also use dense,
but not vice versa.

3. The Sparse BLAS interface is a stateful interface that is not
consistent with the dense BLAS, and would need more extensive
redesign to translate into a modern C++ idiom. See discussion in
[P1417R0](http://wg21.1ink/p1417r0).

4. Our proposal subsumes some dense mixed-precision functionality (see
below).

LAPACK or related functionality
The [LAPACK](http://www.netlib.org/lapack/) Fortran library implements
solvers for the following classes of mathematical problems:
* linear systems,
* linear least-squares problems, and
* eigenvalue and singular value problems.
It also provides matrix factorizations and related linear algebra

operations. LAPACK deliberately relies on the BLAS for good
performance; in fact, LAPACK and the BLAS were designed together. See
history presented in [P1417R0](http://wg21.1ink/p1417r0).
Several C++ libraries provide slices of LAPACK functionality. Here is
a brief, noninclusive list, in alphabetical order, of some libraries
actively being maintained:
* [Armadillo](http://arma.sourceforge.net/),
* [Boost.uBLAS](https://github.com/boostorg/ublas),
* [Eigen](http://eigen.tuxfamily.org/index.php?title=Main Page),
* [Matrix Template Library](http://www.simunova.com/de/mt14/), and
* [Trilinos](https://github.com/trilinos/Trilinos/).
[P1417R0](http://wg21.1ink/p1417r0) gives some history of C++ linear
algebra libraries. The authors of this proposal have
[designed](https://www.icl.utk.edu/files/publications/2017/icl-utk-1031-2017.p
df),
[written](https://github.com/kokkos/kokkos-kernels), and
[maintained](https://github.com/trilinos/Trilinos/tree/master/packages/teuchos
/numerics/src)
LAPACK wrappers in C++. Some authors have LAPACK founders as PhD
advisors. Nevertheless, we have excluded LAPACK-like functionality
from this proposal, for the following reasons:
1. LAPACK is a Fortran library, unlike the BLAS, which is a

multilanguage standard.
2. We intend to support more general element types, beyond the four

that LAPACK supports. It's much more straightforward to make a C++
BLAS work for general element types, than to make LAPACK algorithms
work generically.

First, unlike the BLAS, LAPACK is a Fortran library, not a standard.
LAPACK was developed concurrently with the "level 3" BLAS functions,
and the two projects share contributors. Nevertheless, only the BLAS
and not LAPACK got standardized. Some vendors supply LAPACK
implementations with some optimized functions, but most
implementations likely depend heavily on "reference" LAPACK. There
have been a few efforts by LAPACK contributors to develop C++ LAPACK
bindings, from [Lapack++](https://math.nist.gov/lapack++/) in
pre-templates C++ circa 1993, to the recent ["C++ API for BLAS and
LAPACK"](https://www.icl.utk.edu/files/publications/2017/icl-utk-1031-2017.pdf

(The latter shares coauthors with this proposal.) However, these are
still just C++ bindings to a Fortran library. This means that if
vendors had to supply C++ functionality equivalent to LAPACK, they
would either need to start with a Fortran compiler, or would need to
invest a lot of effort in a C++ reimplementation. Mechanical
translation from Fortran to C++ introduces risk, because many LAPACK
functions depend critically on details of floating-point arithmetic
behavior.
Second, we intend to permit use of matrix or vector element types
other than just the four types that the BLAS and LAPACK support. This
includes "short" floating-point types, fixed-point types, integers,
and user-defined arithmetic types. Doing this is easier for BLAS-like
operations than for the much more complicated numerical algorithms in
LAPACK. LAPACK strives for a "generic" design (see Jack Dongarra
interview summary in [P1417R0](http://wg21.1ink/p1417r0)), but only supports
two real floating-point types and two complex floating-point types.
Directly translating LAPACK source code into a "generic" version could
lead to pitfalls. Many LAPACK algorithms only make sense for number
systems that aim to approximate real numbers (or their complex
extentions). Some LAPACK functions output error bounds that rely on
properties of floating-point arithmetic.
For these reasons, we have left LAPACK-like functionality for future
work. It would be natural for a future LAPACK-like C++ library to
build on our proposal.
Extended-precision BLAS
Our interface subsumes some functionality of the Mixed-Precision BLAS
specification (Chapter 4 of the BLAS Standard). For example, users
may multiply two 16-bit floating-point matrices (assuming that a
16-bit floating-point type exists) and accumulate into a 32-bit
floating-point matrix, just by providing a 32-bit floating-point
matrix as output. Users may specify the precision of a dot product
result. If it is greater than the input vectors' element type
precisions (e.g., -double- vs. -float-), then this effectively
performs accumulation in higher precision. Our proposal imposes
semantic requirements on some functions, like -vector norm2-, to
behave in this way.
However, we do not include the "Extended-Precision BLAS" in this
proposal. The BLAS Standard lets callers decide at run time whether
to use extended precision floating-point arithmetic for internal
evaluations. We could support this feature at a later time.
Implementations of our interface also have the freedom to use more
accurate evaluation methods than typical BLAS implementations. For
example, it is possible to make floating-point sums completely

[independent of parallel evaluation
order](https://bebop.cs.berkeley.edu/reproblas/).
Arithmetic operators and associated expression templates
Our proposal omits arithmetic operators on matrices and vectors.
We do so for the following reasons:
1. We propose a low-level, minimal interface.
2. -operator*- could have multiple meanings for matrices and vectors.

Should it mean elementwise product (like -valarray-) or matrix
product? Should libraries reinterpret "vector times vector" as a
dot product (row vector times column vector)? We prefer to let a
higher-level library decide this, and make everything explicit at
our lower level.

3. Arithmetic operators require defining the element type of the
vector or matrix returned by an expression. Functions let users
specify this explicitly, and even let users use different output
types for the same input types in different expressions.

4. Arithmetic operators may require allocation of temporary matrix or
vector storage. This prevents use of nonowning data structures.

5. Arithmetic operators strongly suggest expression templates. These
introduce problems such as dangling references and aliasing.

Our goal is to propose a low-level interface. Other libraries, such
as that proposed by [P1385R1](http://wg21.1ink/p1385r1), could use our
interface to implement overloaded arithmetic for matrices and vectors.
[P0939R0](http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0939r0.pdf)
advocates using "an incremental approach to design to benefit from
actual experience." A constrained, function-based, BLAS-like
interface builds incrementally on the many years of BLAS experience.
Arithmetic operators on matrices and vectors would require the
library, not necessarily the user, to specify the element type of an
expression's result. This gets tricky if the terms have mixed element
types. For example, what should the element type of the result of the
vector sum -x + y- be, if -x- has element type -complex<float>- and
-y- has element type -double'? It's tempting to use -common type t-,
but -common type t<complex<float>, double>- is -complex<float>-. This
loses precision. Some users may want -complex<double>-; others may
want -complex<long double>- or something else, and others may want to
choose different types in the same program.
[P1385R1](http://wg21.1ink/p1385r1) lets users customize the return type of
such arithmetic expressions. However, different algorithms may call
for the same expression with the same inputs to have different output
types. For example, iterative refinement of linear systems -Ax=b- can
work either with an extended-precision intermediate residual vector -r
= b - A*x-, or with a residual vector that has the same precision as
the input linear system. Each choice produces a different algorithm
with different convergence characteristics. Thus, our library lets
users specify the result element type of linear algebra operations
explicitly, by calling a named function that takes an output argument
explicitly, rather than an arithmetic operator.
Arithmetic operators on matrices or vectors may also need to allocate
temporary storage. Users may not want that. When LAPACK's developers
switched from Fortran 77 to a subset of Fortran 90, their users
rejected the option of letting LAPACK functions allocate temporary
storage on their own. Users wanted to control memory allocation.
Also, allocating storage precludes use of nonowning input data
structures like -basic mdspan-, that do not know how to allocate.
Arithmetic expressions on matrices or vectors strongly suggest
expression templates, as a way to avoid allocation of temporaries and
to fuse computational kernels. They do not *require* expression
templates. For example, -valarray- offers overloaded operators for
vector arithmetic, but the Standard lets implementers decide whether
to use expression templates. However, all of the current C++ linear
algebra libraries that we mentioned above have some form of expression
templates for overloaded arithmetic operators, so users will expect
this and rely on it for good performance. This was, indeed, one of
the major complaints about initial implementations of -valarray-: its
lack of mandate for expression templates meant that initial
implementations were slow, and thus users did not want to rely on it.
(See Josuttis 1999, p. 547, and Vandevoorde and Josuttis 2003, p. 342,
for a summary of the history. Fortran has an analogous issue, in
which (under certain conditions) it is implementation defined whether
the run-time environment needs to copy noncontiguous slices of an
array into contiguous temporary storage.)
Expression templates work well, but have issues. Our papers
[P1417R0](http://wg21.1ink/p1417r0) and "Evolving a Standard C++ Linear
Algebra Library from the BLAS" (P1674R0) give more detail on these
issues. A particularly troublesome one is that modern C++ -auto-
makes it easy for users to capture expressions before their evaluation
and writing into an output array. For matrices and vectors with
container semantics, this makes it easy to create dangling references.
Users might not realize that they need to assign expressions to named
types before actual work and storage happen. [Eigen's

documentation](https://eigen.tuxfamily.org/dox/TopicPitfalls.html)
describes this common problem.
Our -scaled view-, -conjugate view-, and -transpose view- functions
make use of one aspect of expression templates, namely modifying the
array access operator. However, we intend these functions for use
only as in-place modifications of arguments of a function call. Also,
when modifying -basic mdspan-, these functions merely view the same
data that their input -basic mdspan- views. They introduce no more
potential for dangling references than -basic mdspan- itself. The use
of views like -basic mdspan- is self-documenting; it tells users that
they need to take responsibility for scope of the viewed data. We
permit applying these functions to the container -basic mdarray- (see
P1684R0), but this has no more risk of dangling references than
vector::data- does.

Banded matrix layouts
This proposal omits banded matrix types. It would be easy to add the
required layouts and specializations of algorithms later. The packed
and unpacked symmetric and triangular layouts in this proposal cover
the major concerns that would arise in the banded case, like
nonstrided and nonunique layouts, and matrix types that forbid access
to some multi-indices in the Cartesian product of extents.
Tensors
We exclude tensors from this proposal, for the following reasons.
First, tensor libraries naturally build on optimized dense linear
algebra libraries like the BLAS, so a linear algebra library is a good
first step. Second, -mdspan- and -mdarray- have natural use as a
low-level representation of dense tensors, so we are already partway
there. Third, even simple tensor operations that naturally generalize
the BLAS have infintely many more cases than linear algebra. It's not
clear to us which to optimize. Fourth, even though linear algebra is
a special case of tensor algebra, users of linear algebra have
different interface expectations than users of tensor algebra. Thus,
it makes sense to have two separate interfaces.
Design justification
We take a step-wise approach. We begin with core BLAS dense linear
algebra functionality. We then deviate from that only as much as
necessary to get algorithms that behave as much as reasonable like the
existing C++ Standard Library algorithms. Future work or
collaboration with other proposals could implement a higher-level
interface. We also offer an option for an extension to "batched BLAS"
in order to support machine learning and other use cases.
We propose to build the interface on top of -basic mdspan-, as well as
a new -basic mdarray- variant of -basic mdspan- with container
semantics. We explain the value of these two classes below.
Please refer to our papers "Evolving a Standard C++ Linear Algebra
Library from the BLAS" (P1674R0) and "Historical lessons for C++
linear algebra library standardization"
[(P1417RO)](http://wg21.1ink/p1417r0). They will give details and references
for many of the points that we summarize here.
We do not require using the BLAS library
Our proposal is based on the BLAS interface, and it would be natural
for implementers to use an existing C or Fortran BLAS library.
However, we do not require an underlying BLAS C interface. Vendors
should have the freedom to decide whether they want to rely on an
existing BLAS library. They may also want to write a "pure" C++
implementation that does not depend on an external library. They
will, in any case, need a "generic" C++ implementation for matrix and
vector element types other than the four that the BLAS supports.
Why use -basic mdspan- and -basic mdarray-?
* C++ does not currently have a data structure for representing

multidimensional arrays.
* The BLAS' C interface takes a large number of pointer and integer

arguments that represent matrices and vectors. Using
multidimensional array data structures in the C++ interface reduces
the number of arguments and avoids common errors.

* -basic mdspan- and -basic mdarray- support row-major, column-major,
and strided layouts out of the box, and have -Layout- as an
extension point. This lets our interface support layouts beyond
what the BLAS Standard permits.

* They can exploit any dimensions or strides known at compile time.
* They have built-in "slicing" capabilities via -subspan-.
* Their layout and accessor policies will let us simplify our

interfaces even further, by encapsulating transpose, conjugate, and
scalar arguments. See below for details.

* -basic mdspan- and -basic mdarray- are low level; they impose no
mathematical meaning on multidimensional arrays. This gives users
the freedom to develop mathematical libraries with the semantics
they want. (Some users object to calling something a "matrix" or
"tensor" if it doesn't have the right mathematical properties. The
Standard has already taken the word -vector-.)

* They offer a hook for future expansion to support heterogenous

memory spaces. (This is a key feature of -Kokkos::View-, the data
structure that inspired -basic mdspan-.)

* Their encapsulation of matrix indexing makes C++ implementations of
BLAS-like operations much less error prone and easier to read.

* They make it easier to support an efficient "batched" interface.
Why optionally include batched linear algebra?
* Batched interfaces expose more parallelism for many small linear

algebra operations.
* Batched linear algebra operations are useful for many different

fields, including machine learning.
* Hardware vendors offer both hardware features and optimized

software libraries to support batched linear algebra.
* There is an ongoing [interface standardization

effort](http://icl.utk.edu/bblas/), in which we participate.
Function argument aliasing and zero scalar multipliers
Summary:
1. The BLAS Standard forbids aliasing any input (read-only) argument

with any output (write-only or read-and-write) argument.
2. The BLAS uses -INTENT(INOUT)- (read-and-write) arguments to express

"updates" to a vector or matrix. By contrast, C++ Standard
algorithms like -transform- take input and output iterator ranges
as different parameters, but may let input and output ranges be the
same.

3. The BLAS uses the values of scalar multiplier arguments ("alpha" or
"beta") of vectors or matrices at run time, to decide whether to
treat the vectors or matrices as write only. This matters both for
performance and semantically, assuming IEEE floating-point
arithmetic.

4. We decide separately, based on the category of BLAS function, how
to translate -INTENT(INOUT)- arguments into a C++ idiom:
a. For in-place triangular solve or triangular multiply, we

translate the function to take separate input and output
arguments that shall not alias each other.

b. Else, if the BLAS function unconditionally updates (like
-xGER-), we retain read-and-write behavior for that argument.

c. Else, if the BLAS function uses a scalar -beta- argument to
decide whether to read the output argument as well as write to
it (like -xGEMM-), we provide two versions: a write-only version
(as if -beta- is zero), and a read-and-write version (as if
-beta- is nonzero).

For a detailed analysis, see "Evolving a Standard C++ Linear Algebra
Library from the BLAS" (P1674R0).
Support for different matrix layouts
Summary:
1. The dense BLAS supports several different dense matrix "types."

Type is a mixture of "storage format" (e.g., packed, banded) and
"mathematical property" (e.g., symmetric, Hermitian, triangular).

2. Some "types" can be expressed as custom -basic mdspan- layouts;
others do not.

3. Thus, a C++ BLAS wrapper cannot overload on matrix "type" simply by
overloading on -basic mdspan- specialization. The wrapper must use
different function names, tags, or some other way to decide what
the matrix type is.

For more details, including a list and description of the matrix
"types" that the dense BLAS supports, see our paper "Evolving a
Standard C++ Linear Algebra Library from the BLAS" (P1674R0) lists the
different matrix types.
A C++ linear algebra library has a few possibilities for
distinguishing the matrix "type":
1. It could imitate the BLAS, by introducing different function names,

if the layouts and accessors do not sufficiently describe the
arguments.

2. It could introduce a hierarchy of higher-level classes for
representing linear algebra objects, use -basic mdspan- (or
something like it) underneath, and write algorithms to those
higher-level classes.

3. It could use the layout and accessor types in -basic mdspan- simply
as tags to indicate the matrix "type." Algorithms could specialize
on those tags.

We have chosen Approach 1. Our view is that a BLAS-like interface
should be as low-level as possible. Approach 2 is more like a "Matlab
in C++"; a library that implements this could build on our proposal's
lower-level library. Approach 3 sounds attractive. However, most
BLAS matrix "types" do not have a natural representation as layouts.
Trying to hack them in would pollute -basic mdspan- -- a simple class
meant to be easy for the compiler to optimize -- with extra baggage
for representing what amounts to sparse matrices. We think that BLAS
matrix "type" is better represented with a higher-level library that
builds on our proposal.
Caveats
This proposal does not yet have full wording. We have filled in

enough wording for meaningful design discussions, such as those
presented in "Options and votes" below.
Data structures and utilities borrowed from other proposals
-basic mdspan-
[P0009R9](http://wg21.1ink/p0009r9) is a proposal for adding
multidimensional arrays to the C++ Standard Library. -basic mdspan-
is the main class in this proposal. It is a "view" (in the sense of
span-) of a multidimensional array. The rank (number of dimensions)
is fixed at compile time. Users may specify some dimensions at run
time and others at compile time; the type of the -basic mdspan-
expresses this. -basic mdspan- also has two customization points:
* -Layout- expresses the array's memory layout: e.g., row-major (C++

style), column-major (Fortran style), or strided. We use a custom
-Layout- later in this paper to implement a "transpose view" of an
existing -basic mdspan".

* -Accessor- defines the storage handle (i.e., -pointer-) stored in
the -mdspan-, as well as the reference type returned by its access
operator. This is an extension point for modifying how access
happens, for example by using -atomic ref- to get atomic access to
every element. We use custom -Accessor-s later in this paper to
implement "scaled views" and "conjugated views" of an existing
-basic mdspan".

The -basic mdspan- class has an alias -mdspan- that uses the default
-Layout- and -Accessor". In this paper, when we refer to -mdspan-
without other qualifiers, we mean the most general -basic mdspan".
-basic mdarray-
-basic mdspan- views an existing memory allocation. It does not give
users a way to allocate a new array, even if the array has all
compile-time dimensions. Furthermore, -basic mdspan- always stores a
pointer. For very small matrices or vectors, this is not a
zero-overhead abstraction. Also, it's often more natural to pass
around very small objects by value. For these reasons, our paper
(P1684R0) proposes a new class -basic mdarray-.
-basic mdarray- is a new kind of container, with the same deep copy
behavior as -vector-. It has the same extension points as
-basic mdspan-, and also has the ability to use any *contiguous
container* (see **[container.requirements.general]**) for storage.
Contiguity matters because -basic mdspan- views a subset of a
contiguous pointer range, and we want to be able to get a
-basic mdspan- that views the -basic mdarray". -basic mdarray- will
come with support for two different underlying containers: -array- and
-vector-. A -subspan- (see [P0009R9](http://wg21.1ink/p0009r9)) of a
-basic mdarray- will return a -basic mdspan- with the appropriate
layout and corresponding accessor. Users must guard against dangling
pointers, just as they currently must do when using -span- to view a
subset of a -vector-.
The -basic mdarray- class has an alias -mdarray- that uses default
policies. In this paper, when we refer to -mdarray- without other
qualifiers, we mean -basic mdarray-.
Data structures and utilities
Layouts
Our proposal uses the layout policy of -basic mdspan- and
-basic mdarray- in order to represent different matrix and vector data
layouts. Layouts as described by P0009R9 come in three different
categories:
* Unique
* Contiguous
* Strided
P0009R9 includes three different layouts -- -layout left-,
-layout right-, and -layout stride- -- all of which are unique,
contiguous, and strided.
This proposal includes the following additional layouts:
* -layout blas general': Generalization of -layout left- and

-layout right"; describes layout used by General matrix "type"
-layout blas packed": Describes layout used by the BLAS' Symmetric
Packed (SP), Hermitian Packed (HP), and Triangular Packed (TP)
"types"

These layouts have "tag" template parameters that control their
properties; see below.
We do not include layouts for unpacked "types," such as Symmetric
(SY), Hermitian (HE), and triangular (TR). P1674R0 explains our
reasoning. In summary: Their actual layout -- the arrangement of
matrix elements in memory -- is the same as General. The only
differences are constraints on what entries of the matrix algorithms
may access, and assumptions about the matrix's mathematical
properties. Trying to express those constraints or assumptions as
"layouts" or "accessors" violates the spirit (and sometimes the law)
of -basic mdspan-.
The packed matrix "types" do describe actual arrangements of matrix
elements in memory that are not the same as in General. This is why
we provide -layout blas packed-. Note that these layouts would thus

be the first additions to the layouts in P0009R9 that are not unique,
contiguous, and strided.
Algorithms cannot be written generically if they permit arguments with
nonunique layouts, especially output arguments. Nonunique output
arguments require specialization of the algorithm to the layout, since
there's no way to know generically at compile time what indices map to
the same matrix element. Thus, we impose the following rule: Any
-basic mdspan- or -basic mdarray- argument to our functions must
always have unique layout (-is always unique()- is -trues), unless
otherwise specified.
Some of our functions explicitly require outputs with specific
nonunique layouts. This includes low-rank updates to symmetric or
Hermitian matrices, and matrix-matrix multiplication with symmetric or
Hermitian matrices.
Tag classes for layouts
We use tag classes to parameterize a small number of layout names.
Layouts take tag types as template arguments, and function callers use
the corresponding -constexpr- instances of tag types for compile-time
control of function behavior.
Storage order tags
---c++
struct column major t {
constexpr explicit column major t() noexcept = default;

};
inline constexpr column major_t column major = { };
struct row major t {
constexpr explicit row major t() noexcept = default;

};
inline constexpr row major t row major = { };

-column major t- indicates a column-major order, and -row major t-
indicates a row-major order. The interpretation of each depends on
the specific layout that uses the tag. See -layout_blas_general- and
-layout blas packed-.
Triangle tags
Linear algebra algorithms find it convenient to distinguish between
the Hupper triangle,H Hlower triangle,H and HdiagonalH of a matrix.
* The *upper triangle* of a matrix -A- is the set of all elements of

-A- accessed by -A(i,j)- with -i >= j-.
* The *lower triangle* of -A- is the set of all elements of -A-

accessed by -A(i,j)- with -i <= j-.
* The *diagonal* is the set of all elements of -A- accessed by

-A(i,i)-. It is included in both the upper triangle and the lower
triangle.
c++

struct upper triangle t {
constexpr explicit upper triangle_t() noexcept = default;

};
inline constexpr upper triangle t upper triangle = { };
struct lower triangle t {
constexpr explicit lower triangle t() noexcept = default;

};
inline constexpr lower triangle t lower triangle

These tag classes specify whether algorithms and other users of a
matrix (represented as a -basic mdspan- or -basic mdarray-) should
access the upper triangle (-upper triangular t-) or lower triangle
(-lower triangular t-) of the matrix. This is also subject to the
restrictions of -implicit unit_diagonal t- if that tag is also
applied; see below.
Diagonal tags

c++
struct implicit unit diagonal t {
constexpr explicit implicit unit diagonal t() noexcept = default;

};
inline constexpr explicit diagonal t explicit diagonal

These tag classes specify what algorithms and other users of a matrix
(represented as a -basic mdspan- or -basic mdarray-) should assume
about the diagonal entries of the matrix, and whether algorithms and
users of the matrix should access those diagonal entries explicitly.
The -implicit unit diagonal t- tag indicates two things:
* the function will never access the -i,i- element of the matrix,

and
* the matrix has a diagonal of ones (a unit diagonal).

[Note: Typical BLAS practice is that the algorithm never actually
needs to form an explicit -1.0-, so there is no need to impose a

= { };

};
inline constexpr implicit unit diagonal t implicit unit diagonal = { };
struct explicit diagonal t {
constexpr explicit explicit diagonal_t() noexcept = default;

= { };

constraint that -1- or -1.0- is convertible to the matrix's
-element type-. --*end note]*
The tag -explicit diagonal t- indicates that algorithms and other
users of the viewer may access the matrix's diagonal entries directly.
Side tags
Linear algebra algorithms find it convenient to distinguish between
applying some operator to the left side of an object, or the right
side of an object. *[Note:* Matrix-matrix product and triangular
solve with a matrix generally do not commute. --*end note]*
---c++
struct left side t {
constexpr explicit left side t() noexcept = default;

};
constexpr left side t left side
struct right side t {
constexpr explicit right side t() noexcept = default;

};
constexpr right side t right side =

= { };

{ };

These tag classes specify whether algorithms should apply some
operator to the left side (-left side t-) or right side
(-right side t-) of an object.
New "General" layouts
---c++
template<class Storageorder>
class layout blas general;

* *Constraints:* -StorageOrder-
,
row major t-.

These new layouts represent exactly the layout assumed by the General
(GE) matrix type in the BLAS' C binding.
* -layout blas general<column major t>- represents a column-major

matrix layout, where the stride between columns (in BLAS terms,
"leading dimension of the matrix A" or -LDA-) may be greater than or
equal to the number of rows.

* -layout blas general<row major t>- represents a row-major matrix
layout, where the stride (again, -LDA-) between rows may be greater
than or equal to the number of columns.

These layouts are both always unique and always strided. They are
contiguous if and only if the "leading dimension" equals the number of
rows resp. columns. Both layouts are more general than -layout left-
and -layout right-, because they permit a stride between columns
resp. rows that is greater than the corresponding extent. This is why
BLAS functions take an -LDA- (leading dimension of the matrix A)
argument separate from the dimensions (extents, in -mdspan- terms) of
A. However, these layouts are slightly *less* general than
-layout stride-, because they assume contiguous storage of columns
resp. rows. See P1674R0 for further discussion.
These new layouts have natural generalizations to ranks higher than 2.
The definition of each of these layouts would look and work like
-layout stride-, except for the following differences:
* -layout blas general::mapping- would be templated on two -extent-

types. The first would express the -mdspan-'s dimensions, just like
with -layout left-, -layout right-, or -layout stride-. The second
would express the -mdspan-'s strides. The second -extent- would
have rank -rank()-1-.

* -layout blas general::mapping-'s constructor would take an instance
of each of these two -extent- specializations.

These new layouts differ intentionally from -layout stride-, which (as
of P0009R9) takes strides all as run-time elements in an -array-. (We
favor changing this in the next revision of P0009, to make
-layout stride- take the strides as a second -extents- object.) We
want users to be able to express strides as an arbitrary mix of
compile-time and run-time values, just as they can express dimensions.
Packed layouts
---c++
template<class Triangle,

class Storageorder>
class layout blas packed;

Requirements
Throughout this Clause, where the template parameters are not
constrained, the names of template parameters are used to express type
requirements.
* -Triangle- is either -upper triangle t- or -lower triangle t-.
* -StorageOrder- is either -column major t- or -row major t-.

Packed layout mapping
The BLAS' packed matrix "types" all store the represented entries of
the matrix contiguously. They start at the top left side of the
matrix.
A -Storageorder- of -column major t- indicates column-major ordering

is either column major t- or

•

This packs matrix elements starting with the leftmost (least column
index) column, and proceeding column by column, from the top entry
(least row index). A -StorageOrder- of -row major t- indicates
row-major ordering. This packs matrix elements starting with the
topmost (least row index) row, and proceeding row by row, from the
leftmost (least column index) entry.
Whether the "type" stores the upper or lower triangle of the matrix
matters for the layout, not just for the matrix's mathematical
properties. Thus, the choice of upper or lower triangle must be part
of the layout. -Triangle=upper triangle t- means that the layout
represents the upper triangle; -Triangle=lower triangle t- means that
the layout represents the lower triangle. We will describe the
mapping as a function of -StorageOrder- and -Triangle- below.
Packed layouts require that the matrix/matrices are square. That is,
the rightmost two extents (-extents(extents().rank()-2)- and
-extents(extents().rank()-1)-) are equal.
Packed layouts generalize just like unpacked layouts to "batches" of
matrices. The last two (rightmost) indices index within a matrix, and
the remaining index/indices identify which matrix.
Let N be -extents(extents().rank()-1)-. (That is, each matrix in the
batch has N rows and N columns.) Let -i,j- be the last two
(rightmost) indices in the -is- parameter pack given to the packed
layout's -mapping::operator()-.
* For the upper triangular, column-major format, index pair i,j maps

to i + (1 + 2 + ... + j).
* For the lower triangular, column-major format, index pair i,j maps

to i + (1 + 2 + ... + N-j-1).
* For the upper triangular, row-major format, index pair i,j maps

to j + (1 + 2 + ... + i).
* For the lower triangular, row-major format, index pair i,j maps

to j + (1 + 2 + ... + N-i-1).
[Note: Whether or not the storage format has an implicit unit
diagonal (see the -implicit unit diagonal t- tag above) does not
change the mapping. This means that packed matrix storage "wastes"
the unit diagonal, if present. This follows BLAS convention; see
Section 2.2.4 of the BLAS Standard. It also has the advantage that
every index pair -i,j- in the Cartesian product of the extents maps
to a valid (though wrong) codomain index. This is why we declare the
packed layout mappings as "nonunique." --*end note]*

Packed layout views
The idea behind packed matrix types is that users take an existing 1-D
array, and view it as a matrix data structure. We adapt this approach
to our library by including functions that create a "packed view" of
an existing -basic mdspan- or -basic mdarray-. The resulting packed
object has one higher rank.
Requirements
Throughout this Clause, where the template parameters are not
constrained, the names of template parameters are used to express type
requirements.
* -Extents::rank()- is at least 1.
* -Layout- is a unique, contiguous, and strided layout.
* -Triangle- is either -upper triangle t- or -lower triangle t-.
* -StorageOrder- is either -column major t- or -row major t-.

Create a packed triangular view of an existing object
---c++
template<class EltType,

class Extents,
class Layout,
class Accessor,
class Triangle,
class StorageOrder>

constexpr basic mdspan<EltType,
<i>extents-see-returns-below</i>,
layout blas packed<

Triangle,
StorageOrder>,

Accessor>
packed view(
const basic mdspan<EltType, Extents, Layout, Accessor>& m,
typename basic mdspan<EltType, Extents, Layout, Accessor>::index type

num rows,
Triangle,
StorageOrder);

template<class EltType,
class Extents,
class Layout,
class Accessor,
class Triangle,
class DiagonalStorage,
class StorageOrder>

constexpr basic mdspan<const EltType,

<i>extents-see-returns-below</i>,
layout blas packed<

Triangle,
StorageOrder>,

Accessor>
packed view(
const basic mdarray<EltType, Extents, Layout, Accessor>& m,
typename basic mdarray<EltType, Extents, Layout, Accessor>::index type

num rows,
Triangle,
StorageOrder);

template<class EltType,
class Extents,
class Layout,
class Accessor,
class Triangle,
class DiagonalStorage,
class StorageOrder>

constexpr basic mdspan<EltType,
<i>extents-see-returns-below</i>,
layout blas triangular packed<

Triangle,
StorageOrder>,

Accessor>
packed view(
basic mdarray<EltType, Extents, Layout, Accessor>& m,
typename basic mdarray<EltType, Extents, Layout, Accessor>::index type

num rows,
Triangle,
StorageOrder);

„..

* *Requires:* If -num rows- is nonzero, then -m.extent(0)- is at least
(-num rows- + 1) * -num rows- / 2.

* *Effects:* Views the given -basic mdspan- or -basic mdarray- in
packed layout, with the given -Triangle- and -StorageOrder-, where
each matrix (corresponding to the rightmost two extents of the
result) has -num rows- rows and columns.

* *Returns:* A -basic mdspan- -r- with packed layout and the following
properties:
* -r.extent(r.rank()-2)- equals -num rows-.
* -r.extent(r.rank()-1)- equals -num rows-.
* Let -E r- be the type of -r.extents()-. Then,
* -E r::rank()- is one plus -Extents::rank()-, and
* -E r::rank() - E r::dynamic rank()- (the number of static

extents) is no less than -Extents::rank() -
Extents::dynamic rank()-.

Scaled view of an object
Most BLAS functions that take scalar arguments use those arguments as
a transient scaling of another vector or matrix argument. For
example, -xAXPY- computes -y = alpha*x + y-, where -x- and -y- are
vectors, and -alpha- is a scalar. Scalar arguments help make the BLAS
more efficient by combining related operations and avoiding temporary
vectors or matrices. In this -xAXPY- example, users would otherwise
need a temporary vector -z = alpha*x- (-xSCAL-), and would need to
make two passes over the input vector -x- (once for the scale, and
another for the vector add). However, scalar arguments complicate the
interface.
We can solve all these issues in C++ by introducing a "scaled view" of
an existing vector or matrix, via a changed -basic mdspan- -Accessor-.
For example, users could imitate what -xAXPY- does by using our
-linalg add- function (see below) as follows:
---c++
mdspan<double, extents<dynamic extent» y = ;
mdspan<double, extents<dynamic extent» x = ;
double alpha = ...;
linalg add(scaled view(alpha, x), y, y);
„..

The resulting operation would only need to iterate over the entries of
the input vector -x- and the input / output vector -y- once. An
implementation could dispatch to the BLAS by noticing that the first
argument has an -accessor scaled- (see below) -Accessor- type,
extracting the scalar value -alpha-, and calling the corresponding
-xAXPY- function (assuming that -alpha- is nonzero; see discussion
above).
The same -linalg add- interface would then support the operation w :=
alpha*x + beta*y-:
---c++
linalg add(scaled view(alpha, x), scaled view(beta, y), w);
„..

Note that this operation could not dispatch to an existing BLAS
library, unless the library implements the -xWAXPBY- function

specified in the BLAS Standard. However, implementations could
specialize on the result of a -scaled view-, in order to transform the
user's arguments into something suitable for a BLAS library call. For
example, if the user calls -matrix product- (see below) with -A- and
-B- both results of -scaled view-, then the implementation could
combine both scalars into a single "alpha" and call -xGEMM- with it.
-scaled scalar-
-scaled scalar- expresses a scaled version of an existing scalar.
This must be read only. *[Note:* This avoids likely confusion with
the definition of "assigning to a scaled scalar." --*end note]*
* [Note: *
-scaled scalar- and -conjugated scalar- (see below) behave a bit like
-atomic ref-, in that they are special -reference- types for the
Accessors -accessor scaled- resp. -accessor conjugate- (see below),
and that they provide overloaded arithmetic operators that implement a
limited form of expression templates. The arithmetic operators are
templated on their input type, so that they only need to compile if an
algorithm actually uses them. The conversion to -T- allows simple
assignment to -T-, or invocation in functions that take T.
There are other surprising results outside the scope of this
proposal to fix, like the fact that -operator*- does not work for
complex<float>- times -double-. This means -scaled view(x, 93.0)-
for -x- with -element type- -complex<float>- will not compile.
Neither does -complex<float>(5.0, 6.0) * y-. Our experience with
generic numerical algorithms is that floating-point literals need type
adornment.
-*end note]*
---c++
template<class T, class S>
class scaled scalar {
public:
scaled scalar(const T& v, const S& s) :
val(v), scale(s) {}

operator T() const { return val * scale; }
T operator- 0 const { return -(val * scale); }
template<class T2>
decltype(auto) operator+ (const T2& upd) const {

return val*scale + upd;
}
template<class T2>
decltype(auto) operator* (const T2 upd) const {

return val*scale * upd;
}
// ... add only those operators needed for the functions
// in this proposal ...

private:
const T& val;
const S scale;

};

-accessor scaled-
Accessor to make -basic mdspan- return a scaled scalar-.
---c++
template<class Accessor, class S>
class accessor scaled {
public:
using element type = Accessor::element type;
using pointer = Accessor::pointer;
using reference = scaled scalar<Accessor::reference,S>;
using offset policy = accessor scaled<Accessor::offset policy,S>;
accessor scaled(Accessor a, S sval) :
acc(a), scale factor(sval) {}

reference access(pointer& p, ptrdiff t i) const noexcept {
return reference(acc.access(p,i), scale factor);

}
offset policy::pointer offset(pointer p, ptrdiff t i) const noexcept

return a.offset(p,i);
}
element type* decay(pointer

return a.decay(p);
}

private:
Accessor acc;
S scale factor;

};

p) const noexcept

-scaled view-
Return a scaled view using a new accessor.

-c++
template<class T, class Extents, class Layout,

class Accessor, class S>

basic mdspan<T, Extents, Layout, accessor scaled<Accessor, S»
scaled view(S s, const basic mdspan<T, Extents, Layout, Accessor>& a);
template<class T, class Extents, class Layout,

class Accessor, class S>
basic mdspan<const T, Extents, Layout, <i>see-below</i»
scaled view(S s, const basic mdarray<T, Extents, Layout, Accessor>& a);

The Accessor type of the -basic mdspan- returned by the overload that
takes -basic mdarray- is -accessor scaled<ConstAccessor, S>-, where
-ConstAccessor- is an implementation-defined type. See P1684R0 for
details.
Example:
---c++
void test scaled view(basic mdspan<double, extents<10» a)

auto a scaled = scaled view(5.0, a);
for(int i = 0; i < a.extent(0); ++i)

assert(a scaled(i) == 5.0 * a(i));

Conjugated view of an object
Some BLAS functions of matrices also take an argument that specifies
whether to view the transpose or conjugate transpose of the matrix.
The BLAS uses this argument to modify a read-only input transiently
This means that users can let the BLAS work with the data in place,
without needing to compute the transpose or conjugate transpose
explicitly. However, it complicates the BLAS interface.
Just as we did above with "scaled views" of an object, we can apply
the complex conjugate operation to each element of an object using a
special accessor.
What does the complex conjugate mean for non-complex numbers? We use
the convention that the "complex conjugate" of a non-complex number is
just the number. This makes sense mathematically, if we embed a field
(of real numbers) in the corresponding set of complex numbers
that field, as all complex numbers with zero imaginary part.
also the convention that the
[Trilinos](https://github.com/trilinos/Trilinos) library (among
others) uses. However, as we will show below, this does not work with
the C++ Standard Library's definition of -conj-. We deal with this by
defining -conjugate view- so that it does not use -conj- for real
element types.
-conjugated scalar-
-conjugated scalar- expresses a conjugated version of an existing
scalar. This must be read only. *[Note:* This avoids likely
confusion with the definition of "assigning to the conjugate of a
scalar." --*end note]*
The C++ Standard imposes the following requirements on -complex<T>-
numbers:
1. -T- may only be -float-, -double-, or -long double-.
2. Overloads of -conj(const T&)- exist for -T=float-, -double-, -long

double-, or any built-in integer type, but all these overloads have
return type -complex<U>- with -U- either -float-, -double-, or
-long double-. (See **[cmplx.over]**.)

We need the return type of -conjugated scalar-'s arithmetic operators
to be the same as the type of the scalar that it wraps. This means
that -conjugated scalar- only works for -complex<T>- scalar types.
Users cannot define custom types that are complex numbers. (The
alternative would be to permit users to specialize
-conjugated scalar-, but we didn't want to add a *customization point*
in the sense of **[namespace.std]**. Our definition of
-conjugated scalar- is compatible with any future expansion
Standard to permit -complex<T>- for other -T-.)
---c++
template<class T>
class conjugated scalar
public:
using value type = T;
conjugated scalar(const T& v) : val(v)
operator T() const { return conj(val);
template<class T2>
T operator* (const

return conj(val)
}

{

T2 upd) const {
* upd;

template<class T2>
T operator+ (const T2 upd) const {

return conj(val) + upd;

{}
}

over
It's

of the

}
// ... add only those operators needed for the functions in this
// proposal ...

private:
const T& val;

C++

};

-accessor conjugate'
The -accessor conjugate- Accessor makes -basic mdspan- access return a
-conjugated scalar- if the scalar type is -std::complex<R>- for some
R. Otherwise, it makes -basic mdspan- access return the original

-basic mdspan-'s reference type.
---c++
template<class Accessor,
class accessor conjugate
public:

class T>
{

using element type = Accessor::element type;
using pointer = Accessor::pointer;
using reference = Accessor::reference;
using offset policy = Accessor::offset policy;
accessor conjugate(Accessor a) : acc(a) {}
reference access(pointer p, ptrdiff t i) const noexcept {
return reference(acc.access(p,i),scale factor);

}
offset policy::pointer offset(pointer p, ptrdiff t i) const noexcept

return a.offset(p,i);
}
element type* decay(pointer p) const noexcept

return a.decay(p);
}

private:
Accessor acc;

};

{

template<class Accessor, class T>
class accessor conjugate<Accessor, std::complex<T» {
public:
using element type = Accessor::element type;
using pointer = Accessor::pointer;
using reference =
conjugated scalar<Accessor::reference, std::complex<T»;

using offset policy =
accessor conjugate<Accessor::offset policy, std::complex<T»;

accessor conjugate(Accessor a) : acc(a) {}
reference access(pointer p, ptrdiff t i) const noexcept {
return reference(acc.access(p,i),scale factor);

}
offset policy::pointer offset(pointer p, ptrdiff t i) const noexcept

return a.offset(p,i);
}
element type* decay(pointer p) const noexcept

return a.decay(p);
}

private:
Accessor

};
acc;

{

{

{

-conjugate view-
The -conjugate view- function returns a conjugated view using a new
accessor.
---c++
template<class EltType, class Extents, class Layout, class Accessor>
basic mdspan<EltType, Extents, Layout,

accessor conjugate<Accessor, EltType»
conjugate view(basic mdspan<EltType, Extents, Layout, Accessor> a);
template<class EltType, class Extents, class Layout, class Accessor>
basic mdspan<const EltType, Extents, Layout, <i>see-below</i»
conjugate view(const basic mdarray<EltType, Extents, Layout, Accessor>& a);

The Accessor type of the -basic mdspan- returned by the overload that
takes -basic mdarray- is -accessor conjugate<ConstAccessor, S>-, where
-ConstAccessor- is an implementation-defined type. See P1684R0 for
details.
Example:
---c++
void test conjugate view(basic mdspan<complex<double>, extents<10»)

{

}

auto a conj = conjugate view(a);
for(int i = 0; i < a.extent(0); ++i)

assert(a conj(i) == conj(a(i));

[Note: Instead of a partial specialization of -accessor conjugate-,
one could have different overloads of -conjugate view- that return fo
non-complex scalar types the same accessor as the input
argument. --*end note]*
Transpose view of an object

Many BLAS functions of matrices take an argument that specifies
whether to view the transpose or conjugate transpose of the matrix.
The BLAS uses this argument to modify a read-only input transiently.
This means that users can let the BLAS work with the data in place,
without needing to compute the transpose or conjugate transpose
explicitly. However, it complicates the BLAS interface.
Just as we did above with a Hscaled viewn of an object, we can
construct a Htransposed viewn or Hconjugate transposeH view of an
object. This lets us simplify the interface.
An implementation could dispatch to the BLAS by noticing that the
first argument has a -layout transpose- (see below) -Layout- type
(in both transposed and conjugate transposed cases), and/or an
accessor conjugate- (see below) -Accessor- type (in the conjugate
transposed case). It could use this information to extract the
appropriate run-time BLAS parameters.
-layout transpose-
This layout wraps an existing layout, and swaps its rightmost two
indices.

c++
template<class Layout>
class layout transpose
struct mapping {
Layout::mapping nested mapping;
mapping(Layout::mapping map):nested mapping(map)
// ... insert other standard mapping things ...
// for non-batched layouts
ptrdiff t operator() (ptrdiff t

return nested mapping(j, i);

// for batched layouts
ptrdiff t operator() (ptrdiff t... rest, ptrdiff t i, ptrdiff t

return nested mapping(rest..., j, i);

{

0

ptrdiff t j) const {

}
};

};

j) const

* *Constraints:*
* -Layout- is a unique layout.
* -Layout::mapping::rank()- is at least 2.

-transpose view-
The -transpose view- function returns a transposed view of an object.
For rank-2 objects, the transposed view swaps the row and column
indices. In the batched (higher rank) case, the transposed view swaps
the rightmost two indices.
Note that -transpose view- always returns a -basic mdspan- with the
-layout transpose- argument. This gives a type-based indication of
the transpose operation. However, functions' implementations may
convert the -layout transpose- object to an object with a different
but equivalent layout. For example, functions can view the transpose
of a -layout blas<column major t>- matrix as a
-layout blas<row major t>- matrix. (This is a classic technique for
supporting row-major matrices using the Fortran BLAS interface.)

c++
template<class EltType, class Extents, class Layout, class Accessor>
basic mdspan<EltType, Extents, layout transpose<Layout>, Accessor»
transpose view(basic mdspan<EltType, Extents, Layout, Accessor> a);
template<class EltType, class Extents, class Layout, class Accessor>
basic mdspan<EltType, Extents, layout transpose<Layout>, <i>see-below</i»
transpose view(const basic mdarray<EltType, Extents, Layout, Accessor>& a);

The Accessor type of the
takes -basic mdarray- is
for details.
Conjugate transpose
The -conjugate transpose
view of an object. This
conjugate view-.
---c++
template<class EltType, class Extents, class Layout, class Accessor>
basic mdspan<EltType, Extents, layout transpose<Layout>,

accessor conjugate<Accessor>»
conjugate transpose view(
basic mdspan<EltType, Extents, Layout, Accessor> a);

template<class EltType, class Extents, class Layout, class Accessor>
basic mdspan<EltType, Extents, layout transpose<Layout>,

<i>see-below</i»
conjugate transpose view(
const basic mdarray<EltType, Extents, Layout, Accessor>& a)

-basic mdspan- returned by the overload that
an implementation-defined type. See P1684R0

view
view- function returns a conjugate transpose
combines the effects of stranspose_view- and

The Accessor type of the -basic mdspan- returned by the overload that
takes -basic mdarray- is -accessor conjugate<ConstAccessor, S>-, where

-ConstAccessor- is an implementation-defined type. See P1684R0 for
details.
Algorithms
Requirements
Throughout this Clause, where the template parameters are not
constrained, the names of template parameters are used to express type
requirements. In the requirements below, we use -*- in a typename to
denote a Hwildcard,H that matches zero characters, - 1-, - 2', - 3',
or other things as appropriate.
* Algorithms that have a template parameter named -ExecutionPolicy-

are parallel algorithms **[algorithms.parallel.defns]**.
* 'Scalar' meets the requirements of -SemiRegular<Scalar>-. (Some

algorithms below impose further requirements.)
* -Real- is any of the following types: 'float-, -double-, or -long

double-.
* 'in vector* t' is a rank-1 -basic mdarray- or -basic mdspan- with a

potentially -const- element type and a unique layout. If the algorithm
accesses the object, it will do so in read-only fashion.

* 'inout vector* t' is a rank-1 'basic mdarray- or 'basic mdspan-
with a non--const- element type and a unique layout.

* 'out vector* t' is a rank-1 -basic mdarray- or -basic mdspan- with
a non--const- element type and a unique layout. If the algorithm
accesses the object, it will do so in write-only fashion.
'in matrix* t' is a rank-2 -basic mdarray- or 'basic mdspan- with a
const element type. If the algorithm accesses the object, it will
do so in read-only fashion.

* 'inout matrix* t' is a rank-2 -basic mdarray- or 'basic mdspan-
-

with a non-
,
const element type.

* -out matrix* t' is a rank-2 -basic mdarray- or -basic mdspan' with
a non- const' element type. If the algorithm accesses the object,
it will do so in write-only fashion.
-in object* t' is a rank-1 or rank-2 -basic mdarray- or
-basic mdspan- with a potentially -const- element type and a unique
layout. If the algorithm accesses the object, it will do so in read-only
fashion.
-inout object* t' is a rank-1 or rank-2 -basic mdarray- or
'basic mdspan- with a non--const- element type and a unique layout.
'out object* t' is a rank-1 or rank-2 -basic mdarray- or
-basic mdspan- with a non--const- element type and a unique layout.

* -Triangle- is either -upper triangle t' or -lower triangle t-.
* -DiagonalStorage- is either -implicit unit diagonal t' or

explicit diagonal t-.
* -Side- is either -left side t' or -right side t'.
* -in * t' template parameters may deduce a -const- lvalue reference

or a (non--const-) rvalue reference to a 'basic mdarray- or a
-basic mdspan-.

'inout * t' and -out * t' template parameters may deduce a -const- lvalue
reference to a -basic mdspan-, a (non--const-) rvalue reference to a
-basic mdspan-, or a non--const- lvalue reference to a 'basic mdarray-.

BLAS 1 functions
* [Note: *
The BLAS developed in three "levelsn: 1, 2, and 3. BLAS 1 includes
vector-vector operations, BLAS 2 matrix-vector operations, and BLAS 3
matrix-matrix operations. The level coincides with the number of
nested loops in a naA-ve sequential implementation of the operation.
Increasing level also comes with increasing potential for data reuse.
The BLAS traditionally lists computing a Givens rotation among the
BLAS 1 operations, even though it only operates on scalars.
--*end note]*
Givens rotations
Compute Givens rotations
---c++
template<class Real>
void givens rotation setup(const Real a,

const Real b,
Real& c,
Real& s);

template<class Real>
void givens rotation setup(const complex<Real>& a,

const complex<Real>& b,
Real& c,
complex<Real>& s);

This function computes the plane (Givens) rotation represented by the
two values -c- and -s- such that the mathematical expression

[c s] [a] [r]

[] = []
[-conj (s) c] [b] [0]

holds, where conj- indicates the mathematical conjugate of -c-

is always a real scalar, and -c*c + abs(s)*abs(s)- equals one. That
is, -c- and -s- represent a 2 x 2 matrix, that when multiplied by the
right by the input vector whose components are -a- and -b-, produces a
result vector whose first component -r- is the Euclidean norm of the
input vector, and whose second component as zero. *[Note:* The C++
Standard Library -conj- function always returns -complex<T>- for some
-T-, even though overloads exist for non-complex input. The above
exprssion uses -conj- as mathematical notation, not as code. --*end
note] *
[Note: This function corresponds to the BLAS function -2cROTG-. It
has an overload for complex numbers, because the output argument -c-
(cosine) is a signed magnitude. --*end note]*
* *Constraints:* -Real- is -float-, -double-, or -long double-.
* *Effects:* Assigns to -c- and -s- the plane (Givens) rotation

corresponding to the input -a- and -b-.
* *Throws:* Nothing.
Apply a computed Givens rotation to vectors
---c++
template<class ExecutionPolicy,

class inout vector 1 t,
class inout vector 2 t,
class Real>

void givens rotation apply(
ExecutionPolicy&& exec,
inout vector 1 t vl,
inout vector 2 t v2,
const Real c,
const Real s);

template<class inout vector 1 t,
class inout vector 2 t,
class Real>

void givens rotation apply(
inout vector 1 t vl,
inout vector 2 t v2,
const Real c,
const Real s);

template<class ExecutionPolicy,
class inout vector 1 t,
class inout vector 2 t,
class Real>

void givens rotation apply(
ExecutionPolicy&& exec,
inout vector 1 t vl,
inout vector 2 t v2,
const Real c,
const complex<Real> s);

template<class inout vector 1 t,
class inout vector 2 t,
class Real>

void givens rotation apply(
inout vector 1 t vl,
inout vector 2 t v2,
const Real c,
const complex<Real> s);

* [Note: *
These functions correspond to the BLAS function -xR0T-. -c- and -s-
form a plane (Givens) rotation. Users normally would compute -c- and
-s- using -givens rotation setup-, but they are not required to do
this.
--*end note]*
* *Requires:*
* -v1- and -v2- have the same domain.

* *Constraints:*
* -Real- is -float-, -double-, or -long double-.
* -vl.rank()- and -v2.rank()- are both one.
* For the overloads that take the last argument -s- as -Real-, for

-i- in the domain of -v1- and -j- in the domain of -v2-, the
expressions -v1(i) = c*v1(i) + s*v2(j)- and -v2(j) = -s*v1(i) +
c*v2(j)- are well formed.

* For the overloads that take the last argument -s- as -const
complex<Real>-, for -i- in the domain of -v1- and -j- in the
domain of -v2-, the expressions -v1(i) = c*v1(i) + s*v2(j)- and
-v2(j) = -conj(s)*v1(i) + c*v2(j)- are well formed.

* *Effects:* Applies the plane (Givens) rotation specified by -c- and
-s- to the input vectors -v1- and -v2-, as if the rotation were a 2
x 2 matrix and the input vectors were successive rows of a matrix
with two rows.

Swap matrix or vector elements
---c++
template<class inout object 1 t,

class inout object 2 t>
void linalg swap(inout object_l t vl,

inout_object_2 t v2);
template<class ExecutionPolicy,

class inout object 1 t,
class inout_object 2t>

void linalg swap(ExecutionPolicy&& exec,
inout object 1 t vl,
inout object 2 t v2);

[Note: These functions correspond to the BLAS function -xSWAP-.
--*end note]*
* *Requires:* -v1- and -v2- have the same domain.
* *Constraints:*
* -v1.rank()- equals -v2.rank()-.
* -v1.rank()- is no more than 3.
* For -i...- in the domain of -v2- and -v1-, the

expression -v2(i...) = is well formed.
* *Effects:* Swap all corresponding elements of the objects

-v1- and -v2-.
Multiply the elements of an object in place by a scalar

c++
template<class Scalar,

class inout object t>
void scale(const Scalar alpha,

inout object t obj);
template<class ExecutionPolicy,

class Scalar,
class inout object t>

void scale(ExecutionPolicy&& exec,
const Scalar alpha,
inout object t obj);

[Note: These functions correspond to the BLAS function -xSCAL-.
--*end note]*
* *Constraints:*
* -obj.rank()- is no more than 3.
* For -i...- in the domain of -obj-, the expression

*= alpha- is well formed.
* *Effects*: Multiply each element of -obj- in place by -alphas.
Copy elements of one matrix or vector into another

c++
template<class in object t,

class out object t>
void linalg copy(in object t x,

out object t y);
template<class ExecutionPolicy,

class in object t,
class out object t>

void linalg_copy(ExecutionPolicy&& exec,
in object_t x,
out object_t y);

[Note: These functions correspond to the BLAS function -xCOPY-.
--*end note]*
* *Constraints:*
* -x.rank()- equals -y.rank()-.
* -x.rank()- is no more than 3.
* For all -i...- in the domain of -x- and the expression

= is well formed.
* *Requires:* The domain of -y- equals the domain of -x-.
* *Effects:* Overwrite each element of -y- with the corresponding

element of -x-.
Add vectors or matrices elementwise

c++
template<class in object 1 t,

class in object 2 t,
class out object t>

void linalg add(in object_1 t x,
in object_2 t y,
out object t z);

template<class ExecutionPolicy,
class in object 1 t,
class in object_2_t,
class out object t>

void linalg add(ExecutionPolicy&& exec,
in object 1 t x,
in object 2 t y,
out object t z);

[Note: These functions correspond to the BLAS function -xAXPY-.

--*end note]*
* *Requires:* The domain of -z- equals the domains of -x- and -y-.
* *Constraints:*
* -x.rank()-, -y.rank()-, and -z.rank()- are all equal.
* -x.rank()- is no more than 3.
* For in the domain of -x-, -y-, and -z-, the expression

-z(i...) = x(i...) + y(i...)- is well formed.
* *Effects*: Compute the elementwise sum z = x + y.
Inner (dot) product of two vectors
Non-conjugated inner (dot) product

c++
template<class in vector 1 t,

class in vector 2 t,
class Scalar>

void dot(in vector 1 t vl,
in vector 2 t v2,
Scalar& result);

template<class ExecutionPolicy,
class in vector 1 t,
class in vector 2 t,
class Scalar>

void dot(ExecutionPolicy&& exec,
in vector 1 t vl,
in vector 2 t v2,
Scalar& result);

[Note: These functions correspond to the BLAS functions -xDOT- (for
real element types), -xDOTC-, and -xDOTU- (for complex element types).
--*end note]*
* *Requires:* -v1- and -v2- have the same domain.
* *Constraints:* For all -i- in the domain of -v1- and -v2-,

the expression -result += vl(i)*v2(i)- is well formed.
* *Effects:* Assigns to -result- the sum of the products of

corresponding entries of -v1- and -v2-.
* *Remarks:* If -in vector t::element type- and -Scalar- are both

floating-point types or complex versions thereof, and if -Scalar-
has higher precision than -in vector type::element type-, then
implementations will use -Scalars's precision or greater for
intermediate terms in the sum.

[Note: Users can get -xDOTC- behavior by giving the second argument
as a -conjugate view-. Alternately, they can use the shortcut -dotc-
below. --*end note]*
Conjugated inner (dot) product

c++
template<class in vector 1 t,

class in vector 2 t,
class Scalar>

void dotc(in vector 1 t vl,
in vector 2 t v2,
Scalar& result);

template<class ExecutionPolicy,
class in vector 1 t,
class in vector 2 t,
class Scalar>

void dotc(ExecutionPolicy&& exec,
in vector 1 t vl,
in vector 2 t v2,
Scalar& result);

* *Effects:* Equivalent to -dot(v1, conjugate view(v2), result);-.
[Note: -dotc- exists to give users reasonable default inner product
behavior for both real and complex element types. --*end note]*
Euclidean (2) norm of a vector

c++
template<class in vector_t,

class Scalar>
void vector norm2(in vector t v,

Scalar& result);
template<class ExecutionPolicy,

class in vector t,
class Scalar>

void vector norm2(ExecutionPolicy&& exec,
in vector t v,
Scalar& result);

[Note: These functions correspond to the BLAS function -xNRM2-.
--*end note]*
* *Constraints:* For all -i- in the domain of -v1- and -v2-, the

expressions -result += abs(v(i))*abs(v(i))- and -sqrt(result)- are
well formed. *[Note:* This does not imply a recommended
implementation for floating-point types. See *Remarks*

below. --*end note]*
* *Effects:* Assigns to -result- the Euclidean (2) norm of the

vector -v-.
* *Remarks:*
1. If -in vector t::element type- and -Scalar- are both

floating-point types or complex versions thereof, and if -Scalar-
has higher precision than -in vector type::element type-, then
implementations will use -Scalar-'s precision or greater for
intermediate terms in the sum.

2. Let -E- be -in vector t::element type-. If
* -E- is -float-, -double-, -long double-, -complex<float>-,

-complex<double>-, or -complex<long double>-;
* -Scalar- is -E- or larger in the above list of types; and
* -numeric limits<E>::is iec559- is -trues;
then implementations compute without undue overflow or
underflow at intermediate stages of the computation.

[Note: The intent of the second point of *Remarks* is that
implementations generalize the guarantees of -hypot- regarding
overflow and underflow. This excludes naA-ve implementations for
floating-point types. --*end note]*
Sum of absolute values

c++
template<class in vector t,

class Scalar>
void vector abs_sum(in vector t v,

Scalar& result);
template<class ExecutionPolicy,

class in vector t,
class Scalar>

void vector abs_sum(ExecutionPolicy&& exec,
in vector t v,
Scalar& result);

[Note: This function corresponds to the BLAS functions -SASUM-,
-DASUM-, -CSASUM-, and -DZASUM-. --*end note]*
* *Constraints:*
* If -in vector t::element type- is -complex<T>- for some then

for all -i- in the domain of -v-, the expression -result +=
real(v(i)) + imag(v(i))- is well formed.

* Else, for all -i- in the domain of -v-, the expression
result += abs(v(i))- is well formed.

* *Effects:*
* If -in vector t::element type- is complex<T>- for some -T-, then

assigns to -result- the sum of absolute values of the real and
imaginary components of the elements of the vector -v-.

* Else, assigns to -result- the sum of absolute values of the
elements of the vector -v-.

* *Remarks:*
* If -in vector t::element type- and -Scalar- are both

floating-point types or complex versions thereof, and if -Scalar-
has higher precision than -in vector type::element type-, then
implementations will use -Scalars's precision or greater for
intermediate terms in the sum.

Index of maximum absolute value of vector elements
s s s

c++
template<class in vector t>
ptrdiff t vector idx abs max(in vector t v);
template<class ExecutionPolicy,

class in vector t>
ptrdiff t vector idx abs max(ExecutionPolicy&& exec,

in vector t v);

[Note: These functions correspond to the BLAS function -IxAMAX-.
--*end note]*
* *Constraints:* For -i- and -j- in the domain of -v-, the expression

-abs(v(i)) < abs(v(j))- is well formed.
* *Returns:* The index (in the domain of -v-) of the first element of

-v- having largest absolute value. If -v- has zero elements, then
returns --1-.

BLAS 2 functions
General matrix-vector product
[Note: These functions correspond to the BLAS function
-xGEMV-. --*end note]*
The following requirements apply to all functions in this section.
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- is in the domain of -y-

and -j- is in the domain of -x-.
* *Constraints:* For all functions in this section:
* -in matrix t- has unique layout; and
* -A.rank()- equals 2, -x.rank()- equals 1, -y.rank()- equals 1, and

-z.rank()- equals 1.

Overwriting matrix-vector product
„,

c++
template<class ExecutionPolicy,

class in vector t,
class in matrix t,
class out vector t>

void matrix vector product(in matrix t A,
in_vector t x,
out_vector t y);

template<class ExecutionPolicy, class in vector t,
class in matrix t, class out vector t>

void matrix vector_product(ExecutionPolicy&& exec,
in matrix t A,
in vector t x,
out vector t y);

* *Constraints:* For -i,j- in the domain of -A-, the expression
-y(i) += A(i,j)*x(j)- is well formed.

* *Effects:* Assigns to the elements of -y- the product of the matrix
-A- with the vector -x-.

Updating matrix-vector product
c++

template<class ExecutionPolicy, class in vector 1 t,
class in matrix t, class in vector 2_t,
class out vector t>

void matrix vector product(in matrix t A,
in vector 1 t x,
in vector 2 t y,
out vector t z);

template<class ExecutionPolicy, class in vector 1 t,
class in matrix t, class in vector 2_t,
class out vector t>

void matrix vector product(ExecutionPolicy&& exec,
in matrix t A,
in vector 1 t x,
in vector 2 t y,
out_vector_t z);

* *Requires:*
* -y- and -z- have the same domain.

* *Constraints:*
* For -i,j- in the domain of -A-, the expression

-z(i) = y(i) + A(i,j)*x(j)- is well formed.
* *Effects:* Assigns to the elements of -z- the elementwise sum of

-y-, and the product of the matrix -A- with the vector -x-.
Symmetric matrix-vector product
[Note: These functions correspond to the BLAS functions -xSYMV- and
-xSPMV-. --*end note]*
The following requirements apply to all functions in this section.
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- is in the domain of -y-

and -j- is in the domain of -x-.
* *Constraints:*
* -in matrix t- either has unique layout, or -layout blas packed-

layout.
* If -in matrix t- has -layout blas packed- layout, then the

layout's -Triangle- template argument has the same type as
the function's -Triangle- template argument.

* -A.rank()- equals 2, -x.rank()- equals 1, -y.rank()- equals 1, and
-z.rank()- equals 1.

* *Remarks:* The functions will only access the triangle of -A-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -A(j,i)- equals -A(i,j)-.

Overwriting symmetric matrix-vector product
„,

c++
template<class in matrix t,

class Triangle,
class in vector t,
class out vector t>

void symmetric matrix vector product(in matrix t A,
Triangle t,
in vector t x,
out_vector t y);

template<class ExecutionPolicy,
class in matrix t,
class Triangle,
class in vector t,
class out vector t>

void symmetric matrix vector product(ExecutionPolicy&& exec,
in matrix t A,
Triangle t,

in vector t x,
out vector t y);

* *Constraints:* For -i,j- in the domain of -A-, the expression
-y(i) += A(i,j)*x(j)- is well formed.

* *Effects:* Assigns to the elements of -y- the product of the matrix
-A- with the vector -x-.

Updating symmetric matrix-vector product
c++

template<class in matrix t,
class Triangle,
class in vector 1 t,
class in vector 2 t,
class out vector t>

void symmetric matrix vector product(
in matrix t A,
Triangle t,
in vector 1 t x,
in vector 2 t y,
out vector t z);

template<class ExecutionPolicy,
class in matrix t,
class Triangle,
class in vector 1 t,
class in vector 2 t,
class out vector t>

void symmetric matrix vector product(
ExecutionPolicy&& exec,
in matrix t A,
Triangle t,
in vector 1 t x,
in vector 2 t y,
out vector t z);

* *Requires:* -y- and -z- have the same domain.
* *Constraints:* For -i,j- in the domain of -A-, the expression

-z(i) = y(i) + A(i,j)*x(j)- is well formed.
* *Effects:* Assigns to the elements of -z- the elementwise sum of

-y-, with the product of the matrix -A- with the vector
Hermitian matrix-vector product
[Note: These functions correspond to the BLAS functions -xHEMV- and
-xHPMV-. --*end note]*
The following requirements apply to all functions in this section.
* *Requires:H*
* If -i,j- is in the domain of -A-, then -i- is in the domain of -y-

and -j- is in the domain of -x-.
* *Constraints:*
* -in matrix t- either has unique layout, or -layout blas packed-

layout.
* If -in matrix t- has -layout blas packed- layout, then the

layout's -Triangle- template argument has the same type as
the function's -Triangle- template argument.

* -A.rank()- equals 2, -x.rank()- equals 1, -y.rank()- equals 1, and
-z.rank()- equals 1.

* *Remarks:* The functions will only access the triangle of -A-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -A(j,i)- equals
conj(A(i,j))-.

Overwriting Hermitian matrix-vector product
s s s

c++
template<class in matrix_t,

class Triangle,
class in vector t,
class out vector t>

void hermitian matrix vector product(in matrix t A,
Triangle t,
in vector t x,
out vector t y);

template<class ExecutionPolicy,
class in matrix_t,
class Triangle,
class in vector t,
class out vector t>

void hermitian matrix vector product(ExecutionPolicy&& exec,
in matrix t A,
Triangle t,
in vector t x,
out vector t y);

* *Constraints:* For -i,j- in the domain of -A-, the expressions
-y(i) += A(i,j)*x(j)- and -y(i) += conj(A(i,j))*x(j)- are well

formed.
* *Effects:* Assigns to the elements of -y- the product of the matrix

-A- with the vector -x-.
Updating Hermitian matrix-vector product

c++
template<class in matrix t,

class Triangle,
class in vector 1 t,
class in vector 2 t,
class out vector t>

void hermitian matrix vector product(in matrix t A,
Triangle t,
in vector 1 t x,
in vector 2 t y,
out_vector t z);

template<class ExecutionPolicy,
class in matrix t,
class Triangle,
class in vector 1 t,
class in vector 2 t,
class out vector t>

void hermitian matrix vector product(ExecutionPolicy&& exec,
in matrix t A,
Triangle t,
in vector 1 t x,
in vector 2 t y,
out vector t z);

* *Requires:* -y- and -z- have the same domain.
* *Constraints:* For -i,j- in the domain of -A-, the expressions

-z(i) = y(i) + A(i,j)*x(j)- and -z(i) = y(i) + conj(A(i,j))*x(j)-
are well formed.

* *Effects:* Assigns to the elements of -z- the elementwise sum of
-y-, and the product of the matrix -A- with the vector -x-.

Triangular matrix-vector product
[Note: These functions correspond to the BLAS functions -xTRMV- and
-xTPMV-. --*end note]*
The following requirements apply to all functions in this section.
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- is in the domain of -y-

and -j- is in the domain of -x-.
* *Constraints:*
* -in matrix t- either has unique layout, or -layout blas packed-

layout.
* If -in matrix t- has -layout blas packed- layout, then the

layout's -Triangle- template argument has the same type as
the function's -Triangle- template argument.

* -A.rank()- equals 2, -x.rank()- equals 1, -y.rank() equals 1, and
-z.rank()- equals 1.

* *Remarks:*
* The functions will only access the triangle of -A- specified by

the -Triangle- argument -t-.
* If the -DiagonalStorage- template argument has type

-implicit unit diagonal t-, then the functions will not access the
diagonal of -A-, and will assume that that the diagonal elements
of -A- all equal one. *[Note:* This does not imply that the
function needs to be able to form an -element type- value equal to
one. --*end note]

Overwriting triangular matrix-vector product
c++

template<class in matrix t,
class Triangle,
class DiagonalStorage,
class in vector t,
class out vector t>

void triangular matrix vector product(
in matrix t A,
Triangle t,
DiagonalStorage d,
in vector t x,
out vector t y);

template<class ExecutionPolicy,
class in matrix t,
class Triangle,
class DiagonalStorage,
class in vector t,
class out vector t>

void triangular matrix vector product(
ExecutionPolicy&& exec,
in matrix t A,
Triangle t,

in matrix t,
Triangle,
DiagonalStorage,

class in_vector_1_t,
class in_vector_2_t,
class out_vector_t>

void triangular_matrix_vector_product(in_matrix_t A,
Triangle t,
DiagonalStorage d,
in_vector_1_t x,
in_vector_2_t y,
out_vector_t z);

of -A-, the expression

-y- the product of the matrix

product

template<class ExecutionPolicy,
class in matrix t,
class Triangle,
class DiagonalStorage,
class in vector 1 t,
class in vector 2 t,
class out vector t>

void triangular matrix vector product(ExecutionPolicy&& exec,
in matrix_t A,
Triangle t,
DiagonalStorage d,
in vector 1 t x,
in vector 2 t y,
out vector t z);

* *Requires:* -y- and -z- have the same domain.
* *Constraints:* For -i,j- in the domain of -A-, the expression

-z(i) = y(i) + A(i,j)*x(j)- is well formed.
* *Effects:* Assigns to the elements of -z- the elementwise sum

-y-, with the product of the matrix -A- with the vector -x-.
Solve a triangular linear system
„,

c++
template<class

class
class
class
class

DiagonalStorage d,
in vector t x,
out vector t y);

* *Constraints:* For -i,j- in the domain
-y(i) += A(i,j)*x(j)- is well formed.

* *Effects:* Assigns to the elements of
-A- with the vector -x-.

Updating triangular matrix-vector
s s s

c++
template<class

class
class

in matrix t,
Triangle,
DiagonalStorage,
in object t,
out object t>

void triangular matrix vector solve(
in matrix t A,
Triangle t,
DiagonalStorage d,
in object t b,
out object t x);

template<class ExecutionPolicy,
class
class
class

in matrix t,
Triangle,
DiagonalStorage,

class in object t,
class out object t>

void triangular matrix vector_solve(
ExecutionPolicy&& exec,
in matrix t A,
Triangle t,
DiagonalStorage d,
in object t b,
out object t x);

of

[Note: These functions correspond to the BLAS functions -xTRSV- and
-xTPSV-. --*end note]*
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- is in the domain of -x-

and -j- is in the domain of -b-.
* *Constraints:*
* -A.rank()- equals 2.
* -b.rank()- equals 1 and -x.rank()- equals 1.
* -in matrix t- either has unique layout, or -layout blas packed-

layout.
* If -in matrix t- has -layout blas packed- layout, then the

layout's -Triangle- template argument has the same type as

the function's -Triangle- template argument.
* If -r- is in the domain of -x- and -b-, then the expression

-x(r) = y(r)- is well formed.
* If -r- is in the domain of -x-, then the expression -x(r) -=

A(r,c)*x(c)- is well formed.
* If -r- is in the domain of -x- and -DiagonalStorage- is

explicit diagonal_t-, then the expression -x(r) /= A(r,r) is
well formed.

* *Effects:* Assigns to the elements of -x- the result of solving the
triangular linear system(s) Ax=b.

* *Remarks:*
* The functions will only access the triangle of -A- specified by

the -Triangle- argument -t-.
* If the -DiagonalStorage- template argument has type

-implicit unit diagonal t-, then the functions will not access the
diagonal of -A-, and will assume that that the diagonal elements
of -A- all equal one. *[Note:* This does not imply that the
function needs to be able to form an -element type- value equal to
one. --*end note]

Rank-1 (outer product) update of a matrix
Nonsymmetric non-conjugated rank-1 update

c++
template<class in vector 1 t,

class in vector 2 t,
class inout matrix t>

void matrix rank 1 update(
in vector 1 t x,
in vector 2 t y,
inout matrix t A);

template<class ExecutionPolicy,
class in vector 1 t,
class in vector 2 t,
class inout matrix_t>

void matrix rank 1 update(
ExecutionPolicy&& exec,
in vector 1 t x,
in vector 2 t y,
inout matrix t A);

[Note: This function corresponds to the BLAS functions -xGER- (for
real element types), -xGERC-, and -xGERU- (for complex element
types). --*end note]*
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- is in the domain of -x-

and -j- is in the domain of -y-.
* *Constraints:*
* -A.rank()- equals 2, -x.rank()- equals 1, and -y.rank()- equals 1.
* For -i,j- in the domain of -A-, the expression

-A(i,j) += x(i)*y(j)- is well formed.
* *Effects:* Assigns to -A- on output the sum of -A- on input, and the

outer product of -x- and -y-.
[Note: Users can get -xGERC- behavior by giving the second argument
as a -conjugate view-. Alternately, they can use the shortcut
-matrix rank 1 update c- below. --*end note]*
Nonsymmetric conjugated rank-1 update

c++
template<class in vector 1 t,

class in vector 2 t,
class inout matrix t>

void matrix rank 1 update c(
in vector 1_t x,
in vector 2 t y,
inout matrix t A);

template<class ExecutionPolicy,
class in vector 1 t,
class in vector 2 t,
class inout matrix t>

void matrix rank 1 update c(
ExecutionPolicy&& exec,
in vector 1 t x,
in vector 2 t y,
inout matrix t A);

* *Effects:* Equivalent to
-matrix rank 1 update(x, conjugate view(y), A);-.

Rank-1 update of a Symmetric matrix
c++

template<class in vector t,
class inout matrix t,
class Triangle>

void symmetric matrix rank 1 update(

in vector t x,
inout matrix t A,
Triangle t);

template<class ExecutionPolicy,
class in vector t,
class inout matrix t,
class Triangle>

void symmetric matrix rank 1 update(
ExecutionPolicy&& exec,
in vector t x,
inout matrix t A,
Triangle t);

[Note: These functions correspond to the BLAS functions -xSYR- and
-xSPR-. --*end note]*
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- and -j- are in the

domain of -x-.
* *Constraints:*
* -A.rank()- equals 2 and -x.rank()- equals 1.
* -A- either has unique layout, or -layout blas packed- layout.
* If -A- has -layout blas packed- layout, then the layout's

-Triangle- template argument has the same type as the function's
-Triangle- template argument.

* For -i,j- in the domain of -A-, the expression -A(i,j) +=
x(i)*x(j)- is well formed.

* *Effects:* Assigns to -A- on output the sum of -A- on input, and the
outer product of -x- and -x-.

* *Remarks:* The functions will only access the triangle of -A-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -A(j,i)- equals -A(i,j)-.

Rank-1 update of a Hermitian matrix
c++

template<class in vector t,
class inout matrix t,
class Triangle>

void hermitian matrix rank 1 update(
in vector t x,
inout matrix t A,
Triangle t);

template<class ExecutionPolicy,
class in vector t,
class inout matrix t,
class Triangle>

void hermitian matrix rank 1 update(
ExecutionPolicy&& exec,
in vector t x,
inout matrix t A,
Triangle t);

[Note: These functions correspond to the BLAS functions -2cHER- and
-xHPR-. --*end note]*
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- and -j- are in the

domain of -x-.
* *Constraints:*
* -A.rank()- equals 2 and -x.rank()- equals 1.
* -A- either has unique layout, or -layout blas packed- layout.
* If -A- has -layout blas packed- layout, then the layout's

-Triangle- template argument has the same type as the function's
-Triangle- template argument.

* For -i,j- in the domain of -A-, the expression -A(i,j) +=
x(i)*conj(x(j))- is well formed.

* *Effects:* Assigns to -A- on output the sum of -A- on input, and the
outer product of -x- and the conjugate of -x-.

* *Remarks:* The functions will only access the triangle of -A-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -A(j,i)- equals
conj(A(i,j))-.

Rank-2 update of a symmetric matrix
c++

template<class in vector 1 t,
class in vector 2 t,
class inout matrix_t,
class Triangle>

void symmetric matrix rank 2 update(
in vector 1 t x,
in vector 2 t y,
inout matrix t A,
Triangle t);

template<class ExecutionPolicy,

class in vector 1 t,
class in vector 2 t,
class inout matrix t,
class Triangle>

void symmetric matrix rank 2 update(
ExecutionPolicy&& exec,
in vector 1 t x,
in vector 2 t y,
inout matrix t A,
Triangle t);

[Note: These functions correspond to the BLAS functions -xSYR2- and
-xSPR2-. --*end note]*
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- and -j- are in the

domain of -x- and -y-.
* *Constraints:*
* -A.rank()- equals 2, -x.rank()- equals 1, and

-y.rank()- equals 1.
* -A- either has unique layout, or -layout blas packed- layout.
* If -A- has -layout blas packed- layout, then the layout's

-Triangle- template argument has the same type as the function's
-Triangle- template argument.

* For -i,j- in the domain of -A-, the expression
-A(i,j) += x(i)*y(j) + y(i)*x(j)- is well formed.

* *Effects:* Assigns to -A- on output the sum of -A- on input, the
outer product of -x- and -y-, and the outer product of -y- and -x-.

* *Remarks:* The functions will only access the triangle of -A-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -A(j,i)- equals -A(i,j)-.

Rank-2 update of a Hermitian matrix
---c++
template<class in vector 1 t,

class in vector 2 t,
class inout matrix t,
class Triangle>

void hermitian matrix rank 2 update(
in vector 1 t x,
in vector 2 t y,
inout matrix t A,
Triangle t);

template<class ExecutionPolicy,
class in vector 1 t,
class in vector 2 t,
class inout matrix t,
class Triangle>

void hermitian matrix rank 2 update(
ExecutionPolicy&& exec,
in vector 1 t x,
in vector 2 t y,
inout matrix t A,
Triangle t);

[Note: These functions correspond to the BLAS functions -xHER2- and
-xHPR2-. --*end note]*
* *Requires:*
* If -i,j- is in the domain of -A-, then -i- and -j- are in the

domain of -x- and -y-.
* *Constraints:*
* -A.rank()- equals 2, -x.rank()- equals 1, and

-y.rank()- equals 1.
* -A- either has unique layout, or -layout blas packed- layout.
* If -A- has -layout blas packed- layout, then the layout's

-Triangle- template argument has the same type as the function's
-Triangle- template argument.

* For -i,j- in the domain of -A-, the expression -A(i,j) +=
x(i)*conj(y(j)) + y(i)*conj(x(j))- is well formed.

* *Effects:* Assigns to -A- on output the sum of -A- on input, the
outer product of -x- and the conjugate of -y-, and the outer product
of -y- and the conjugate of -x-.

* *Remarks:* The functions will only access the triangle of -A-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -A(j,i)- equals
conj(A(i,j))-.

BLAS 3 functions
General matrix-matrix product
[Note: These functions correspond to the BLAS function -xGEMM-.
--*end note]*
The following requirements apply to all functions in this section.
* *Requires:* If -i,j- is in the domain of -C-, then there exists -k-

such that -i,k- is in the domain of -A-, and -k,j- is in the domain

of B.
* *Constraints:*
* -inmatrixlt-, -inmatrix2t-, -inmatrix 3 t- (if applicable),

and sout_matrix_t- have unique layout.
* -A.rank()- equals 2, -B.rank()- equals 2, -C.rank()- equals 2, and

-E.rank()- (if applicable) equals 2.
Overwriting general matrix-matrix product

c++
template<class in_matrix_1_t,

class in_matrix_2_t,
class out_matrix_t>

void matrix_product(in_matrix_1
in matrix 2

template<class
class
class
class

t A,
t B,

outmatrixt C);
ExecutionPolicy,
in_matrix_1_t,
in_matrix_2_t,
out matrix t>

void matrix product(ExecutionPolicy&& exec,
in matrix 1 t A,
in matrix 2 t B,
out matrix t C);

* *Constraints:*
* For -i,j- in the domain of -C-,

-k,j- in the domain of -B-, the
A(i,k)*B(k,j)- is well formed.

* *Effects:* Assigns to the elements
the matrices -A- and B.

Updating general matrix-matrix
s s s

c++
template<class

class
class
class

in matrix 1 t,
in matrix 2 t,
in matrix 3 t,
out matrix t>

void matrix_product(in_matrix_1_t A,
in_matrix_2_t B,
in_matrix_3 t E,
out_matrix_t C);

ExecutionPolicy,
in_matrix_1_t,
in_matrix_2_t,
in_matrix_3_t,
out matrix t>

template<class
class
class
class
class

-i,k- in the domain of -A-, and
expression -C(i,j) +=

of the matrix -C- the product of

product

void matrix product(ExecutionPolicy&& exec,
in matrix_1 t A,
in matrix_2_t B,
in matrix 3 t E,
out matrix t C);

* *Requires:*
* -C- and -E- have the same domain.

* *Constraints:* For -i,j- in the domain of -C-, -i,k- in
of -A-, and -k,j- in the domain of -B-, the expression
E(i,j) + A(i,k)*B(k,j)- is well formed.

* *Effects:* Assigns to the elements of the matrix -C- on
elementwise sum of -E- and the product of the matrices

* *Remarks:* -C- and -E- may refer to the same matrix. I
they must have the same layout.

Symmetric matrix-matrix product
[Note: These functions correspond to the BLAS function -xSYMM-.
Unlike the symmetric rank-1 update functions, these functions assume
that the input matrix -- not the output matrix -- is symmetric. --*end
note] *
The following requirements apply to all functions in this section.
* *Requires:* If -i,j- is in the domain of -C-, then there exists -k-

such that -i,k- is in the domain of -A-, and -k,j- is in the domain
of B.

* *Constraints:*
* -in_matrix_1_t- either has unique layout, or -layout_blas_packed-

layout.
* -inmatrix 2 t-, -in matrix 3 t- (if applicable), and

out matrix t- have unique layout.
* If -in matrix t- has -layout blas packed- layout, then the

layout's -Triangle- template argument has the same type as
the function's -Triangle- template argument.

* -A.rank()- equals 2, -B.rank()- equals 2, -C.rank()- equals 2, and
-E.rank()- (if applicable) equals 2.

* *Remarks:* The functions will only access the triangle of -A-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -A(j,i)- equals -A(i,j)-.

the domain
-C(i,j) +=

output, the
-A- and B.
f so, then

Overwriting symmetric matrix-matrix product
c++

template<class in matrix 1 t,
class Triangle,
class Side,
class in matrix 2 t,
class out matrix t>

void symmetric matrix product(
in matrix 1 t A,
Triangle t,
Side s,
in matrix 2 t B,
out matrix t C);

template<class ExecutionPolicy,
class in matrix 1 t,
class Triangle,
class Side,
class in matrix 2 t,
class out matrix t>

void symmetric matrix product(
ExecutionPolicy&& exec,
in matrix 1 t A,
Triangle t,
Side s,
in matrix 2 t B,
out matrix t C);

* *Constraints:*
* If -Side- is -left side t-, then for -i,j- in the domain of -C-,

-i,k- in the domain of -A-, and -k,j- in the domain of -B-, the
expression -C(i,j) += A(i,k)*B(k,j)- is well formed.

* If -Side- is -right side t-, then for -i,j- in the domain of -C-,
-i,k- in the domain of -B-, and -k,j- in the domain of -A-, the
expression -C(i,j) += B(i,k)*A(k,j)- is well formed.

* *Effects:*
* If -Side- is -left side t-, then assigns to the elements of the
matrix -C- the product of the matrices -A- and B.

* If -Side- is -right side t-, then assigns to the elements of the
matrix -C- the product of the matrices -B- and A.

Updating symmetric matrix-matrix product
c++

template<class in matrix_1_t,
class Triangle,
class Side,
class in matrix_2 t,
class in matrix 3 t,
class out matrix t>

void symmetric matrix product(
in matrix 1 t A,
Triangle t,
Side s,
in matrix 2 t B,
in matrix 3 t E,
out matrix t C);

template<class ExecutionPolicy,
class in matrix 1 t,
class Triangle,
class Side,
class in matrix_2 t,
class in matrix_3 t,
class out matrix t>

void symmetric matrix product(
ExecutionPolicy&& exec,
in matrix 1 t A,
Triangle t,
Side s,
in matrix 2 t B,
in matrix 3 t E,
out matrix t C);

* *Requires:*
* -C- and -E- have the same domain.

* *Constraints:*
* If -Side- is -left side t-, then for -i,j- in the domain of -C-,

-i,k- in the domain of -A-, and -k,j- in the domain of -B-, the
expression -C(i,j) += E(i,j) + A(i,k)*B(k,j)- is well formed.

* If -Side- is -right side t-, then for -i,j- in the domain of -C-,
-i,k- in the domain of -B-, and -k,j- in the domain of -A-, the
expression -C(i,j) += E(i,j) + B(i,k)*A(k,j)- is well formed.

* *Effects:*
* If -Side- is -left side t-, then assigns to the elements of the

matrix -C- on output, the elementwise sum
the matrices -A- and B.

* If -Side- is -right side t-, then assigns to the
matrix -C- on output, the elementwise sum of -E-
the matrices -B- and A.

* *Remarks:* -C- and -E- may refer to the same matrix
they must have the same layout.

Hermitian matrix-matrix product
[Note: These functions correspond to the BLAS function -xHEMM-.
Unlike the Hermitian rank-1 update functions, these functions assume
that the input matrix -- not the output matrix -- is Hermitian. --*end
note] *
The following requirements apply
* *Requires:* If -i,j- is in the

such that -i,k- is in the
of B.

* *Constraints:*

to all functions in
domain of -C-, then

domain of -A-, and -k,j-

this section.
there exists -k-
is in the domain

* -in matrix 1 t- either has unique layout, or -layout_blas_packed-
layout.

* -in matrix 2 t-, -in matrix 3 t- (if applicable), and
out matrix t- have unique layout.

* If -in matrix t- has -layout blas packed-
layout's -Triangle- template argument has
the function's -Triangle- template argumen

* -A.rank()- equals 2, -B.rank()- equals 2,
-E.rank()- (if applicable) equals 2.

* *Remarks:* The functions will only access th
specified by the -Triangle- argument -t-, an
indices -i,j- outside that triangle, that -A
conj(A(i,j))-.

Overwriting Hermitian
c++

template<class
class
class
class
class

of -E- and the product of

elements of the
and the product of

. If so, then

layout, then the
the same type as
t.
-C.rank() equals 2, and

e triangle of -A-
d will assume for
(j,i)- equals

matrix-matrix product

in matrix 1 t,
Triangle,
Side,
in matrix 2 t,
out matrix t>

void hermitian matrix product(
in matrix 1 t A,
Triangle t,
Side s,
in matrix 2 t B,
out matrix t C);

template<class ExecutionPolicy,
class in matrix 1 t,
class Triangle,
class Side,
class in matrix 2 t,
class out matrix t>

void hermitian matrix product
ExecutionPolicy&& exec,
in matrix 1 t A,
Triangle t,
Side s,
in matrix 2 t B,
out matrix t C);

* *Constraints:*
* If -Side- is -left side t-, then for -i,j- in the domain of -C-,

-i,k- in the domain of -A-, and -k,j- in the domain of -B-, the
expression -C(i,j) += A(i,k)*B(k,j)- is well formed.

* If -Side- is -right side t-, then for -i,j- in the domain of -C-
-i,k- in the domain of -B-, and -k,j- in the domain of -A-, the
expression -C(i,j) += B(i,k)*A(k,j)- is well formed.

* *Effects:*
* If -Side- is -left side t-, then assigns to the elements of the
matrix -C- the product of the matrices -A- and B.

* If -Side- is -right side t-, then assigns to the elements of the
matrix -C- the product of the matrices -B- and A.

Updating Hermitian matrix-matrix product
s s s

c++
template<class

class
class
class
class
class

in_matrix_1_t,
Triangle,
Side,
in_matrix_2_t,
in_matrix_3_t,
out matrix t>

void hermitian_matrix_product(
in_matrix_1_t A,
Triangle t,
Side s,

in matrix 2
in matrix 3
out matrix t

template<class
class
class
class
class
class
class

t B,
t E,
C);
ExecutionPolicy,
in_matrix_1_t,
Triangle,
Side,
in_matrix_2_t,
in_matrix_3_t,
out matrix t>

void hermitian matrix product(
ExecutionPolicy&& exec,
in matrix 1 t A,
Triangle t,
Side s,
in matrix 2_t B,
in_matrix 3 t E,
out matrix t C);

* *Requires:*
* -C- and -E- have the same domain.

* *Constraints:*
* If -Side- is -left side t-, then for -i,j- in the domain of -C-,

-i,k- in the domain of -A-, and -k,j- in the domain of -B-, the
expression -C(i,j) += E(i,j) + A(i,k)*B(k,j)- is well formed.

* If -Side- is -right side t-, then for -i,j- in the domain of -C-
-i,k- in the domain of -B-, and -k,j- in the domain of -A-, the
expression -C(i,j) += E(i,j) + B(i,k)*A(k,j)- is well formed.

* *Effects:*
* If -Side- is -left side t-, then assigns to the elements of the
matrix -C- on output, the elementwise sum of -E- and the product of
the matrices -A- and B.

* If -Side- is -right side t-, then assigns to the elements of the
matrix -C- on output, the elementwise sum of -E- and the product of
the matrices -B- and A.

* *Remarks:* -C- and -E- may refer to the same matrix. If so, then
they must have the same layout.

Rank-2k update of a symmetric or Hermitian matrix
[Note: Users can achieve the effect of the -TRANS- argument of these
BLAS functions, by making -C- a -transpose view- or
conjugate transpose view-. --*end note]*
Rank-2k update of a symmetric matrix

c++
template<class in matrix 1 t,

class in matrix 2 t,
class inout matrix t,
class Triangle>

void symmetric matrix rank 2k update(
in matrix 1 t A,
in matrix 2 t B,
inout matrix t C,
Triangle t);

template<class ExecutionPolicy,
class in matrix 1 t,
class in matrix 2 t,
class inout matrix t,
class Triangle>

void symmetric matrix rank 2k update(
ExecutionPolicy&& exec,
in matrix 1 t A,
in matrix 2_t B,
inout matrix_t C,
Triangle t);

[Note: These functions correspond to the BLAS function -xSYR2K-.
The BLAS Hquick referenceH has a typo; the HALPHAH argument of
-CSYR2K- and -ZSYR2K- should not be conjugated. --*end note]*
* *Requires:*
* If -i,j- is in the domain of -C-, then there exists -k- such that

-i,k- and -j,k- are in the domain of -A-, and -j,k- and -i,k- are
in the domain of B.

* *Constraints:*
* -A.rank()- equals 2, -B.rank()- equals 2, and

-C.rank()- equals 2.
* -C- either has unique layout, or -layout blas packed- layout.
* If -C- has -layout blas packed- layout, then the layout's

-Triangle- template argument has the same type as the function's
-Triangle- template argument.

* For -i,j- in the domain of -C-, -i,k- and -k,i- in the domain of
-A-, and -j,k- and -k,j- in the domain of -B-, the expression
-C(i,j) += A(i,k)*B(j,k) + B(i,k)*A(j,k)- is well formed.

* *Effects:* Assigns to -C- on output, the elementwise sum of -C- on
input with (the matrix product of -A- and the non-conjugated
transpose of -B-) and (the matrix product of -B- and the
non-conjugated transpose of -A-.)

* *Remarks:* The functions will only access the triangle of -C-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -C(j,i)- equals -C(i,j)-.

Rank-2k update of a Hermitian matrix
c++

template<class in matrix 1 t,
class in matrix 2 t,
class inout matrix t,
class Triangle>

void hermitian matrix rank 2k update(
in matrix 1 t A,
in matrix 2 t B,
inout matrix t C,
Triangle t);

template<class ExecutionPolicy,
class in matrix 1 t,
class in matrix 2 t,
class inout matrix t,
class Triangle>

void hermitian matrix rank 2k update(
ExecutionPolicy&& exec,
in matrix 1 t A,
in matrix 2 t B,
inout matrix t C,
Triangle t);

[Note: These functions correspond to the BLAS function -xHER2K-.
--*end note]*
* *Requires:*
* If -i,j- is in the domain of -C-, then there exists -k- such that

-i,k- and -j,k- are in the domain of -A-, and -j,k- and -i,k- are
in the domain of B.

* *Constraints:*
* -A.rank()- equals 2, -B.rank()- equals 2, and

-C.rank()- equals 2.
* -C- either has unique layout, or -layout blas packed- layout.
* If -C- has -layout blas packed- layout, then the layout's

-Triangle- template argument has the same type as the function's
-Triangle- template argument.

* For -i,j- in the domain of -C-, -i,k- and -k,i- in the domain of
-A-, and -j,k- and -k,j- in the domain of -B-, the expression
-C(i,j) += A(i,k)*conj(B(j,k)) + B(i,k)*conj(A(j,k))- is well
formed.

* *Effects:* Assigns to -C- on output, the elementwise sum of -C- on
input with (the matrix product of -A- and the conjugate transpose of
-B-) and (the matrix product of -B- and the conjugate transpose of
-A)

* *Remarks:* The functions will only access the triangle of -C-
specified by the -Triangle- argument -t-, and will assume for
indices -i,j- outside that triangle, that -C(j,i)- equals
conj(C(i,j))-.

Solve multiple triangular linear systems with the same matrix
---c++
template<class in matrix t,

class Triangle,
class DiagonalStorage,
class Side,
class in matrix t,
class out matrix t>

void triangular matrix matrix solve(
in matrix_t A,
Triangle t,
DiagonalStorage d,
Side s,
in object_t B,
out object_t X);

template<class ExecutionPolicy,
class in matrix 1 t,
class Triangle,
class DiagonalStorage,
class Side,
class in matrix 2 t,
class out matrix t>

void triangular matrix matrix solve(
ExecutionPolicy&& exec,
in matrix t A,
Triangle t,

DiagonalStorage d,
Side s,
in object t B,
out object t X);

[Note: These functions correspond to the BLAS function -xTRSM-. The
Reference BLAS does not have a -xTPSM- function. --*end note]*
* *Requires:*
* -X.extent(1)- equals -B.extent(1)-.
* If -X.extent(1) != 0- and -i,j- is in the domain of -A-, then

there exists -k- such that -i,k- is in the domain of -X- and -j,k-
is in the domain of B.

* *Constraints:*
* -A.rank()- equals 2, -B.rank()- equals 2, and -X.rank()- equals 2.
* -in matrix 1 t- either has unique layout, or -layout blas packed-

layout.
* -in matrix 2 t- and -out matrix t- have unique layout.
* If -r,j- is in the domain of -X- and -B-, then the expression

-X(r,j) = B(r,j)- is well formed.
* If -r,j- and -c,j- are in the domain of -X-, then the expression

-X(r,j) -= A(r,c)*X(c,j)- is well formed.
* If -r,j- is in the domain of -X- and -DiagonalStorage- is

explicit diagonal t-, then the expression -X(r,j) /= A(r,r)- is
well formed.

* *Effects:*
* If -Side- is -left side t-, then assigns to the elements of -X-

the result of solving the triangular linear system(s) AX=B for X.
* If -Side- is -right side t-, then assigns to the elements of -X-

the result of solving the triangular linear system(s) XA=B for X.
* *Remarks:*
* The functions will only access the triangle of -A- specified by

the -Triangle- argument -t-.
* If the -DiagonalStorage- template argument has type

-implicit unit diagonal t-, then the functions will not access the
diagonal of -A-, and will assume that that the diagonal elements
of -A- all equal one. *[Note:* This does not imply that the
function needs to be able to form an -element type- value equal to
one. --*end note]

Examples
---c++
using vector t = basic mdspan<double, extents<dynamic extent»;
using dy ext2 t = extents<dynamic extent, dynamic extent›;
using matrix t = basic mdspan<double, dy ext2 t›;
// Create vectors
vector t x = ...;
vector t y = ...;
vector t z = ...;
// Create matrices
matrix t A = ...;
matrix t B = ...;
matrix t C = ...;
// z = 2.0 * x + y;
linalg add(par, scaled view(2.0, x), y, z);
// y = 2.0 * y + z;
linalg add(par, z, scaled view(2.0, y), y);
// y = 3.0 * A * x;
matrix vector product(par, scaled view(3.0, A), x, y);
// y = 3.0 * A * x + 2.0 * y;
matrix vector product(par, scaled view(3.0, A), x,

scaled view(2.0, y), y);
// y = transpose(A) * x;
matrix vector product(par, transpose view(A), x, y);

Batched BLAS
This proposal has an optional extension to support batched operations.
Functions that take matrices and/or vectors would simply be overloaded
to take arguments with one higher rank. The leftmost dimension of
each -basic mdspan- or -basic mdarray- would refer to a specific
matrix or vector in the "batch." A nonunique "broadcast" layout could
also be used to use the same lower-rank object in the operation for
each of the batched operations. Otherwise, the -extent(0)- of each
-basic mdspan- or -basic mdarray- argument must be equal.
Options and votes
This is a preliminary proposal. Besides the usual bikeshedding, we
also want to present more broad options for voting. Here is a list;
we will explain each option below.
1. Omit vector-vector operations in favor of existing C++ Standard

algorithms?
2. Retain "view" functions (modest expression templates)?
3. Combine functions that differ only by rank of arguments?
4. Prefer overloads to different function names?

5. Retain existing BLAS behavior for scalar multipliers?
Omit vector-vector operations in favor of existing C++ Standard
algorithms?
Annex C of the BLAS Standard offers a "Thin BLAS" option for Fortran
95, where the language itself could replace many BLAS operations.
Fortran 95 comes with dot products and other vector operations built
in, so the "Thin BLAS" only retains four "BLAS 1" functions: -SWAP-,
-ROT-, -NRM2-, and -ROTG-. By analogy with the "Thin BLAS," we could
reduce the number of new functions, by relying on functionality either
already in C++, or likely to enter C++ soon. For example, if we
defined iterators for rank-1 -basic mdspan- and -basic mdarray-, we
could rely on -transform- and -transform reduce- for most of the
vector-vector operations.
Matrix-vector ("BLAS 2") and matrix-matrix ("BLAS 3") operations
require iteration over two or three dimensions, and are thus less
natural to implement using -transform- or -transform reduce-. They
are also more likely to get performance benefits from specialized
implementations.
Here are arguments for this approach:
1. It reduces the number of new functions.
2. It focuses on "performance primitives" most likely to benefit from

vendor optimization.
3. If a hypothetical "parallel Ranges" enters the Standard, it could

cover many of the use cases for parallel vector-vector operations.
Here are arguments against this approach:
1. It takes some effort to implement correct and accurate vector

norms. Compare to [POSIX requirements for

-hypot-](http://pubs.opengroup.org/onlinepubs/9699919799/functions/hypot.html)

If -hypot- is in the Standard, then perhaps norms should also be.
2. In general, a linear algebra library can make more specific

statements about the precision at which output arguments are
computed.

3. Some of our "vector-vector" operations are actually "object-object"
operations that work for matrices too. Replacing those with
existing Standard algorithms would call for iterators on matrices.

4. It's easier to apply hardware-specific optimizations to
vector-vector operations if they are exposed as such.

5. Exposing a full linear algebra interface would give implementers
the option to use extended-precision or even reproducible
floating-point arithmetic for all linear algebra operations. This
can be useful for debugging complicated algorithms. Compare to
"checked iterator" debug options for the C++ Standard Library.

6. It helps to have linear algebra names for linear algebra
operations. For example, -string- still exists, even though much
of its functionality is covered by -vector<char>-.

Our preference :
* We would prefer a complete BLAS-like library, but if we had to give

up some BLAS 1 functions, we would prefer to keep at least the
vector norms.

* We think that iterators are not always the right way to access
multidimensional objects.

Retain "view" functions (modest expression templates)?
The four functions -scaled view-, -conjugate view-, -transpose view-,
and -conjugate transpose view- use -mdspan- accessors to implement a
modest form of expression templates. We say "modest" because they
mitigate several known issues with expression templates:
1. They do not introduce ADL-accessible arithmetic operators on

matrices or vectors.
2. If used with -mdspan-, then they would not introduce any more

dangling references than -span- (**[views.span]**) would introduce.
3. Their intended use case, as temporary "decorators" for function

arguments, discourages capture as -auto- (which may result in
unexpectedly dangling references).

The functions have the following other advantages :
1. They reduce the number of linear algebra function arguments.
2. They simplify native C++ implementations, especially for BLAS 1 and

BLAS 2 functions that do not need complicated optimizations in
order to get reasonable performance.

However, the functions have the following disadvantages :
1. They would be the first instance of required expression templates

in the C++ Standard Library. (-valarray- in **[valarray.syn]**
permits but does not require expression templates.)

2. When applied to a -basic mdarray-, the functions could introduce
dangling references. Compare to -gslice array- for -valarray-.

3. If users can "tag" a matrix with a scaling factor or the transpose
property, why can't they "tag" the matrix with other properties,
like symmetry? That suggests a design in which function parameters
are generic "things," convertible to -basic mdspan- or
-basic mdarray-, with properties (in the sense of

[P0939R0](http://wg21.link/p0939r0)) that the function can query.
Here are the options:
1. Keep existing "view" functions.
2. Add a general property tagging mechanism, so users can tag a matrix

with mathematical properties like "symmetric," "Hermitian," or
"triangular." Use this mechanism to pass assumptions into
functions, and eliminate -symmetric *-, -hermitian *-, and (in some
cases) -triangular *- versions of functions.

3. Drop "view" functions. Specify scaling, transpose, and conjugation
as function parameters.

Our preference : Option 1 (retain existing "view" functions).
Option 2 is interesting but would add a lot of complication. Would we
let users customize properties? Algorithms could never be made
generic on arbitrary mathematical properties of matrices. This is
also closer to the high-level interface -- "Matlab in C++" -- that is
not our target for this proposal. In addition, Option 2 would
generalize well beyond what the BLAS does. For example, the BLAS'
-xSYMM- (symmetric matrix-matrix multiply) only specifies that one of
the input matrices is symmetric.
We would prefer Option 3 over Option 2.
Combine functions that differ only by rank of arguments?
This relates to the "thin BLAS" proposal mentioned above. Another
part of that proposal was the elimination of separate function names,
when (the Fortran 95 equivalent of) overloads could express the same
idea. There are two parts to this:
1. Combine functions that differ only by rank of arguments.
2. Combine functions that differ only by matrix "type."
The second part especially has pitfalls that we will describe below.
As an example of the first part, the BLAS functions -xSYRK- and
-xSYR1- differ only by rank of their input arguments. Both perform a
symmetric outer-product update of their input/output matrix argument
-C-. -xSYRK- could implement -xSYR1- by taking an input "matrix" -A-
with a single column. This is not necessarily the fastest way to
implement -xSYR1-. However, since the rank of an -mdspan- or
-mdarray- is known at compile time, implementations could dispatch to
the appropriate low-level computational kernel with no run-time
overhead. (Existing BLAS implementations do not always optimize for
the case where a "matrix" argument to a BLAS 3 function like -xGEMM-
has only one column, and thus the function could dispatch to a BLAS 2
function like -xGEMV-.)
Here are arguments for this approach:
1. It reduces the number of new functions.
2. Implementations could identify all special cases at compile time.
Here are arguments against this approach:
1. It adds special cases to implementations.
2. It's easy to make mistakes: for example, -xTRMV- and -xTRMM- differ

by -SIDE- argument. Combining them while ignoring -SIDE- would
lose use cases.

3. It calls for a "tagging matrices with properties" mechanism that we
rejected above.

For instance, the BLAS functions -xGEMM- and -xSYRK- appear to differ
just by assumptions on their output argument. -xGEMM- computes the
matrix-matrix product update -C := alpha * A * B + beta * C-, and
assumes that -C- has the General BLAS matrix "type." -xSYRK- computes
the symmetric matrix-matrix product update -C := alpha * A * A'T +
beta * C-, where -C- is assumed to be symmetric and the algorithm only
accesses either the upper or lower triangle of C. If users could
"tag" -C- as symmetric, then it seems like we could express both
algorithms as a single function -gemm-. However, this approach easily
leads to unexpected behavior. What if -C- has a symmetric layout and
-A * B- is nonsymmetric, but users request to compute -C := A * B-?
The result -C- would be mathematically incorrect, even though it would
retain symmetry.
Our preference : Do not combine functions in this way.

Retain existing BLAS behavior for scalar multipliers?
The BLAS Standard treats zero values of -alpha- or -beta- scalar
multipliers as special short-circuiting cases. For example, the
matrix-matrix multiply update -C := alpha * A * B + beta * C- does not
compute -A*B- if -alpha- is zero, and treats -C- as write only if
-beta- is zero. We propose to change this behavior by always
performing the requested operation, regardless of the values of any
scalar multipliers.
This has the following advantages :
1. It removes special cases.
2. It avoids branches, which could affect performance for small

problems.
3. It does not privilege floating-point element types.
However, it has the following disadvantages :
1. Implementations based on an existing BLAS library must

"double-check" scaling factors. If any is zero, the implementation
cannot call the BLAS and must perform the scaling manually. This

will likely reduce performance for a case that users intend to be
fast, unless the implementation has access to internal BLAS details
that can skip the special cases.

2. Users may expect BLAS semantics in a library that imitates BLAS
functionality. These users will get unpleasantly surprising
results (like -Inf- or -NaN- instead of zero, if they set -alpha=0-
and assume short circuiting).

Our preference : Remove the special short-circuiting cases.
We mitigate the disadvantages by offering both write-only and
read-and-write versions of algorithms like matrix-matrix multiply,
whose BLAS versions take a -beta- argument. In our experience using
the BLAS, users are more likely to expect that setting -beta=0- causes
write-only behavior. Thus, if the interface suggests write-only
behavior, users are less likely to be unpleasantly surprised.
Acknowledgments
Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energya€TMs National Nuclear Security
Administration under contract DE-NA0003525.
Special thanks to Bob Steagall and Guy Davidson for boldly leading the
charge to add linear algebra to the C++ Standard Library, and for many
fruitful discussions. Thanks also to Andrew Lumsdaine for his
pioneering efforts and history lessons.
References by coathors
* G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and

O. Schwartz, ["Communication lower bounds and optimal algorithms for
numerical linear
algebra,"](https://doi.org/10.1017/50962492914000038), *Acta
Numerica*, Vol. 23, May 2014, pp. 1-155.

* H. C. Edwards, B. A. Lelbach, D. Sunderland, D. Hollman, C. Trott,
M. Bianco, B. Sander, A. Iliopoulos, J. Michopoulos, and M. Hoemmen,
"-mdspan-: a Non-Owning Multidimensional Array Reference,"
[P0009R0](http://wg21.link/p0009r9), Jan. 2019.

* M. Hoemmen, D. Hollman, and C. Trott, "Evolving a Standard C++
Linear Algebra Library from the BLAS," P1674R0, Jun. 2019.

* M. Hoemmen, J. Badwaik, M. Brucher, A. Iliopoulos, and
J. Michopoulos, "Historical lessons for C++ linear algebra library
standardization," [(P1417R0)](http://wg21.link/p1417r0), Jan. 2019.

* D. Hollman, C. Trott, M. Hoemmen, and D. Sunderland, "-mdarray-: An
Owning Multidimensional Array Analog of -mdspan-",
[P1684R0](https://isocpp.org/files/papers/P1684RO.pdf), Jun. 2019.

* D. Hollman, C. Kohlhoff, B. Lelbach, J. Hoberock, G. Brown, and
M. Dominiak, "A General Property Customization Mechanism,"
[P1393R0](http://wg21.link/p1393r0), Jan. 2019.

Other references
* [Basic Linear Algebra Subprograms Technical (BLAST) Forum

Standard](http://netlib.org/blas/blast-forum/blas-report.pdf),
International Journal of High Performance Applications and
Supercomputing, Vol. 16. No. 1, Spring 2002.

* L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley, ["An updated set of basic linear
algebra subprograms (BLAS),"](https://doi.org/10.1145/567806.567807)
ACM Transactions on Mathematical Software (TOMS), Vol. 28, No. 2,
Jun. 2002, pp. 135-151.

* G. Davidson and B. Steagall, "A proposal to add linear algebra
support to the C++ standard library," [P1385R1](http://wg21.link/p1385r1),
Mar. 2019.

* B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, and M. Wong,
"Direction for ISO C++," [P0939R0](http://wg21.link/p0939r0), Feb. 2018.

* J. Dongarra, R. Pozo, and D. Walker, "LAPACK++: A Design Overview of
Object-Oriented Extensions for High Performance Linear Algebra," in
Proceedings of Supercomputing '93, IEEE Computer Society Press,
1993, pp. 162-171.

* M. Gates, P. Luszczek, A. Abdelfattah, J. Kurzak, J. Dongarra,
K. Arturov, C. Cecka, and C. Freitag, ["C++ API for BLAS and

LAPACK, "] (https : //www. icl .utk . edu/files/publications/2017/icl -utk-1031-2017 .pd
f)
SLATE Working Notes, Innovative Computing Laboratory, University of
Tennessee Knoxville, Feb. 2018.

* K. Goto and R. A. van de Geijn, "Anatomy of high-performance matrix
multiplication,"](https://doi.org/10.1145/1356052.1356053), *ACM
Transactions on Mathematical Software* (TOMS), Vol. 34, No. 3, May
2008

* J. Hoberock, "Integrating Executors with Parallel Algorithms,"
[P1019R2](http://wg21.link/p1019r2), Jan. 2019.

* N. A. Josuttis, "The C++ Standard Library: A Tutorial and Reference,"
Addison-Wesley, 1999.

* M. Kretz, "Data-Parallel Vector Types & Operations,"

[P0214r9](http://wg21.1ink/p0214r9), Mar. 2018.
* D. Vandevoorde and N. A. Josuttis, HC++ Templates: The Complete

Guide,H Addison-Wesley Professional, 2003.

