
MICHIGAN STATE
UNIVERSITY

PERFORMANCE PORTABLE MAGNETOHYDRODYNAMICS
FOR THE EXASCALE ERA

Forrest W. Glines1,213, Philipp Gretel, Brian W. O'Shea1,2
1Department of Physics and Astronomy, 2Department of Computational Mathematics, Science and Engineering, Michigan State University, 3 Sandia National Laboratory.

Email: glinesfo@msu.edu, grete@pa.msu.edu, oshea@msu.edu

Computational plasma models such as magnetohydro-
dynamics (MHD) are essential tools in modern plasma
physics. They can complement experiments, inform fu-
ture research, and provide insight into plasma phenom-
ena that are difficult to create in a lab. For simulations to
more closely match reality and deepen our understand-
ing of plasmas, we need the computational resources of
increasingly larger supercomputers.

However, constraints in computer chip manufacturing
are leading to new computer architectures such as many-
core processors and graphics processing units (GPUs) to
make up the majority of next generation computer clus-
ters. Each new architecture can require a non-trivial
rewrite of a simulation code. A current goal in super-
computing is the creation of paradigms for writing perfor-
mance portable code: code that can run efficiently at high
performance on many different architectures.

To explore the development of performance portable
plasma codes, we created K-ATHENA [2], a performance
portable, CPU and GPU performant conversion of the
CPU-only astrophysical MHD code ATHENA++ [3] using
KOKKOS [1], a performance portability library.

Sandia
National,
Laboratories

KOKKOS

for(int k ks; k < ke; k++) {

for(int j= js; j < je; j++){

#oragma omo simd

}}}

for(int i is; i < ie; i++) {

/* Loop Body */

u(k, j,i)

Example triple f o r loop for a typical operation in a finite
volume method on a structured mesh such as in a code
like ATHENA++, where k s, ke, j s, j e, is, and ie are
loop bounds and u is a field quantity. When converting
these stenciled operations to GPUs using KOKKOS, the
loop body is mostly unchanged.

PROGRAMMING METHODOLO

using namespace Kokkos;

par.' nil for(MDRangePolicy<Rank<3>>

(fksfjsfislffkefjefiel),

KOKKOS LAMBDA (int k, int j, int i){

/* Loop Body */

u(k, j,i)

;

Example for loop using KOKKOS. The loop body is
reformulated into a lambda function and passed into
Kokkos : :parallel for to execute on the target archi-
tecture. The class Kokkor! : :MDRangePoli(specifies
the loop bounds. The array u is now a Kokkos : :
a KOKKOS building block that allows transparent access
to CPU and GPU memory.

using namespace Kokkos;

parallel for (team_policy (nk*nj, AUTO)

KOKKOS__LAMBDA (member._type t e am mem) {

int lr = team mem. _League rank ;

int k= lr / nj ks;

int j= lr % nj js;

parallel fo3 (

TeamThreadRange<> (team mem, is, ie)

[Ez] (int i) {

/* Loop Body */

u(k, j,i)

});1);

Another approach using KOKKOS1 team based parallelism
through the class Kokkos : : TeamThreadRange. This in-
terface is closer to the underlying parallelism used by the
backend such as CUDA blocks on GPUs and SIMD vec-
tors on CPUs. We found that it was easier to optimize per-
formance using team based parallelism.

3D LINEAR WAVE PERFORMA
In order to assess the performance of K-ATHENA, we conducted scaling tests using a 3D linear MHD wave as a proxy for research applications of MHD. All numbers shown here

were obtained using a second order scheme consisting of a Van Leer integrator, piecewise linear reconstruction, and a Roe Riemann solver. We compare the performance against the
base ATHENA++ CPU version as well as against GAMER, an MHD code written in CUDA using the same algorithms. [4].

Single GPU Single CPU

108 7

a) 107 -

•

Wm'

• K-Athena Volta

• K-Athena Pascal

GAMER Pascal

Athena++ SKX

K-Athena SKX 1

Athena++ BDW

K-Athena BDW

GAMER BDW

111111111111 I
WO

►OWN

323 643 1283 2563 643 1283 2563

total # cells total # cells

Number of cell updates per second vs. problem size (number
of cells) for ATHENA++, K-ATHENA, and GAMER, on GPUs
(left) and CPUs (right).

On Nvidia Tesla P100 (Pascal) GPUs K-ATHENA performs
comparably to GAMER, which is optimized for CUDA and
uses more hardware features such as CUDA streams. K-
ATHENA reaches a peak performance of 1.04 x 108 cell-
updates/s on a single Nvidia Tesla V100 (Volta) GPU.

On CPUs K-ATHENA retains virtually the same perfor-
mance as ATHENA++, i.e., reaching 1.43 x 107 cell-updates/s
on a single CPU (20 core Intel Xeon Gold 6148).

GAMER timings from [4]. All other results were generated for this work.
SAND No. XXXXXXXXXXX

107

1.0

Electra Skylake CPU Theta Knights Landing

• • I

• •

Athena++ 643

Athena++ 1283

K-Athena 643

K-Athena 1283
.

r

I I 1 I 1 I 1 1 I 1 I 1

0.8 -
w

0.6 -
w

0.0 -II
10° 101 102 103

nodes

1 1 1

• • • Athena++ HT-1

• • Athena++ HT-2

Athena++ HT-4

K-Athena HT-1

K-Athena HT-2

K-Athena HT-4

1 1 1 1 1 1

.̀
••
AN,•

w

—

w • •
• •
', w
• •
*

-m

•4, *
41,

y a 1

1

-

1 1 1 1 1 1 1 1 1 1

101 102 103

Titan Opteron/Kepler GPU Summit Power9/Volta GPU
I

-

,,

-

!

I • MI • 11 • I ••••• MI •• IN • 1 • 111 • N •

1 1 1

-

..

Athena++ CPU 1283

K-Athena CPU 1283

K-Athena GPU 1923

11111111111iiift1/4„.

rig

MIN MEM MI= =I= == 11

4

1 1 1 1 1 1

-

-
•

• • •

-

.

•

Athena++ CPU HT-1 643

Athena++ CPU HT-2 643

K-Athena CPU HT-1 643

K-Athena CPU HT-2 643

K-Athena GPU 2563

K-Athena CPU nested 643

- 11
1 11 1 1 11 1 1 11 1 l 1 11 - 1 1 1

10° 101 102 103
nodes # nodes

1 1 1 1 1 1 1 1 1 1 1 1

101 102 103

nodes

1 1 1

Weak scaling on different supercomputers for K-ATHENA and ATHENA++. The top row shows cell-updates per
second per node to directly compare performance on different systems, the bottom row shows parallel efficiency
normalized to single node performance, on the Electra, Theta, Titan, and Summit. Running on 4,096 nodes with
24,576 GPUs on Summit, K-ATHENA achieved 1.94 trillion cell updates per second.
System Details: NASA Electra: two 20-core Intel Xeon Gold 6148 CPUs per node ALCF's Theta: one 64-core Intel Xeon Phi 7230 (per node,
OLCF's Titan: one AMD Opteron 6274 16-core CPU and one Nvidia K2OX GPU per node, OLCF's Summit: two 21-core IBM POWER9 CPUs
and six Nvidia V100 (Volta) GPUs per node.

Porting ATHENA++ to GPUs using KOKKOS required
only a moderate effort in code developement. The ease
of development is largely due to the good design of
ATHENA++ and consistent use of data structures.

Our main goal was to enable GPU-accelerated simu-
lations while maintaining performance on CPUs using a
single code base. We achieved this goal by reaching 93-
100°/0 of the original ATHENA++ performance on CPUs,
and reaching comparable performance to GAMER (a
specialized CUDA code) on GPUs.

With it's high efficiency of computing resources, K-
ATHENA will allow us to study magnetized turbulence,
galaxy clusters, and other plasmas at higher resolutions
than what was previously possible.

ACKNOWLEDGM

We thank the KOKKOS developers, particulary Christian Trott and Steve Bova,
and the organizers of the 2018 Performance Portability with KOKKOS Bootcamp for
their help using KOKKOS in ATHENA++. We thank Kristian Beckwith for inspir-
ing discussions on KOKKOS. We thank the ATHENA++ team for making their code
public and for their well designed code. We acknowledge funding by NASA As-
trophysics Theory Program grant #NNX15AP39G. Code development, testing, and
benchmarking was made possible through various computing grants including al-
locations on NASA Pleiades (SMD-16-7720), OLCF Titan (AST133), XSEDE Comet
(TG-AST090040), and Michgian State University's High Performance Computing
Center. Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of En-
ergy's National Nuclear Security Administration under contract DE-NA0003525.

[1] H. Carter Edwards, C. R. Trott, D. Sunderland, Journal of Parallel and Dis-
tributed Computing, Domain-Specific Languages and High-Level Frame-
works for High-Performance Computing 2014, 74, 3202-3216.

[2] P. Grete, F. W. Glines, B. W. O'Shea, submitted to IEEE Transactions on Parallel
and Distributed Systems 2019, arXiv:1905.04341 [cs.DC].

C. J. White, J. M. Stone, C. F. Gammie, The Astrophysical Journal Supplement
Series 2016, 225, 22.

[3]

[4] U.-H. Zhang, H.-Y. Schive, T. Chiueh, The Astrophysical Journal Supplement
Series 2018, 236, 50.

SAND2019-6874C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

