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Computational plasma models such as magnetohydro-
dynamics (MHD) are essential tools in modern plasma
physics. They can complement experiments, inform fu-
ture research, and provide insight into plasma phenom-
ena that are difficult to create in a lab. For simulations to
more closely match reality and deepen our understand-
ing of plasmas, we need the computational resources of
increasingly larger supercomputers.

However, constraints in computer chip manufacturing
are leading to new computer architectures such as many-
core processors and graphics processing units (GPUs) to
make up the majority of next generation computer clus-
ters. Each new architecture can require a non-trivial
rewrite of a simulation code. A current goal in super-
computing is the creation of paradigms for writing perfor-
mance portable code: code that can run efficiently at high
performance on many different architectures.

To explore the development of performance portable
plasma codes, we created K-ATHENA [2], a performance
portable, CPU and GPU performant conversion of the
CPU-only astrophysical MHD code ATHENA++ [3] using
KOKKOS [1], a performance portability library.
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KOKKOS

for( int k ks; k < ke; k++) {

for( int j= js; j < je; j++){

#oragma omo simd

}}}

for( int i is; i < ie; i++) {

/* Loop Body */

u(k, j,i)

Example triple f o r loop for a typical operation in a finite
volume method on a structured mesh such as in a code
like ATHENA++, where k s, ke, j s, j e, is, and ie are
loop bounds and u is a field quantity. When converting
these stenciled operations to GPUs using KOKKOS, the
loop body is mostly unchanged.

PROGRAMMING METHODOLO

using namespace Kokkos;

par.' nil for( MDRangePolicy<Rank<3>>

(fksfjsfislffkefjefiel),

KOKKOS LAMBDA (int k, int j, int i){

/* Loop Body */

u(k, j,i)

;

Example for loop using KOKKOS. The loop body is
reformulated into a lambda function and passed into
Kokkos : :parallel for to execute on the target archi-
tecture. The class Kokkor! : :MDRangePoli( specifies
the loop bounds. The array u is now a Kokkos : :
a KOKKOS building block that allows transparent access
to CPU and GPU memory.

using namespace Kokkos;

parallel for (team_policy (nk*nj, AUTO)

KOKKOS__LAMBDA (member._type t e am mem) {

int lr = team mem. _League rank ;

int k= lr / nj ks;

int j= lr % nj js;

parallel fo3 (

TeamThreadRange<> (team mem, is, ie)

[Ez] (int i) {

/* Loop Body */

u(k, j,i)

});1);

Another approach using KOKKOS1 team based parallelism
through the class Kokkos : : TeamThreadRange. This in-
terface is closer to the underlying parallelism used by the
backend such as CUDA blocks on GPUs and SIMD vec-
tors on CPUs. We found that it was easier to optimize per-
formance using team based parallelism.

3D LINEAR WAVE PERFORMA
In order to assess the performance of K-ATHENA, we conducted scaling tests using a 3D linear MHD wave as a proxy for research applications of MHD. All numbers shown here

were obtained using a second order scheme consisting of a Van Leer integrator, piecewise linear reconstruction, and a Roe Riemann solver. We compare the performance against the
base ATHENA++ CPU version as well as against GAMER, an MHD code written in CUDA using the same algorithms. [4].
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Number of cell updates per second vs. problem size (number
of cells) for ATHENA++, K-ATHENA, and GAMER, on GPUs
(left) and CPUs (right).

On Nvidia Tesla P100 (Pascal) GPUs K-ATHENA performs
comparably to GAMER, which is optimized for CUDA and
uses more hardware features such as CUDA streams. K-
ATHENA reaches a peak performance of 1.04 x 108 cell-
updates/s on a single Nvidia Tesla V100 (Volta) GPU.

On CPUs K-ATHENA retains virtually the same perfor-
mance as ATHENA++, i.e., reaching 1.43 x 107 cell-updates/s
on a single CPU (20 core Intel Xeon Gold 6148).

GAMER timings from [4]. All other results were generated for this work.
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Weak scaling on different supercomputers for K-ATHENA and ATHENA++. The top row shows cell-updates per
second per node to directly compare performance on different systems, the bottom row shows parallel efficiency
normalized to single node performance, on the Electra, Theta, Titan, and Summit. Running on 4,096 nodes with
24,576 GPUs on Summit, K-ATHENA achieved 1.94 trillion cell updates per second.
System Details: NASA Electra: two 20-core Intel Xeon Gold 6148 CPUs per node ALCF's Theta: one 64-core Intel Xeon Phi 7230 (per node,
OLCF's Titan: one AMD Opteron 6274 16-core CPU and one Nvidia K2OX GPU per node, OLCF's Summit: two 21-core IBM POWER9 CPUs
and six Nvidia V100 (Volta) GPUs per node.

Porting ATHENA++ to GPUs using KOKKOS required
only a moderate effort in code developement. The ease
of development is largely due to the good design of
ATHENA++ and consistent use of data structures.

Our main goal was to enable GPU-accelerated simu-
lations while maintaining performance on CPUs using a
single code base. We achieved this goal by reaching 93-
100°/0 of the original ATHENA++ performance on CPUs,
and reaching comparable performance to GAMER (a
specialized CUDA code) on GPUs.

With it's high efficiency of computing resources, K-
ATHENA will allow us to study magnetized turbulence,
galaxy clusters, and other plasmas at higher resolutions
than what was previously possible.
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