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Cerium shock melts at ~10-18 GPa on the Hugoniot
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We have completed four “modern” experiments®
starting with Z3005. (Older experiments reverberated
very early). Smooth ramp compression from ~20 GPa
initial shock.

Each experiment utilized 3-4 sample pairs. Some of
the thickest samples from the last two experiments
(Z3145 and Z3248) shocked up during the ramp.
Those data were discarded from this analysis, which
left 10 sample pairs representing shockless
compression from an initial ~20 GPa shock.

True Velocity (km/s)

Sound speed data from those 10 pairs are statistically
consistent with one another (typically within mutual
error).

Velocimetry shows no obvious “kink” in raw velocities.

*Chris Seagle is the Pl for these cerium experiments
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Individual sample pairs exhibit a suggestive bump in the sound speed around

1.5 km/s --- but this feature is not statistically significant for single pairs
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, Individual sample pairs exhibit a suggestive bump in the sound speed around
‘B 1.5 km/s --- but this feature is not statistically significant for single pairs

| Cerium

A total of four experiments have been executed, each
with 3-4 sample pairs.

Most pairs were shockless beyond the initial shock.
(Samples that shocked up during the ramp were
discarded from this analysis.)

None of the sample pairs exhibit elastic behavior on
initial loading from the starting shock state — the cerium
is shock melted.

Lagrangian Sound Velocity (km/s)

Averaging multiple sample pairs suggests a :

statistically significant bump in the sound velocity 4 ]
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Averaging a total of 10 sample pairs reveals a statistically significant feature
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Averaging a total of 10 sample pairs reveals a statistically significant feature
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Average of four experiments places tight constraints on the
cerium EOS

Low error on stress-density, 1.7% and 1.4% respectively at
peak stress of ~150 GPa

Other than the Hugoniot and shock-release, this is the only
data constraining the dynamic cerium response above ~40 GPa

No obvious kink in stress-density

Stress (GPa)
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We performed DFT simulations of cerium to compare the experimental

&) observations with theoretical calculations of the cerium response

60 . . . : '
Black = Olsen (1985) DAC ¢-Ce (tetragonal)
. Yellow = GGA @ 0 K -

) BIGU;J\: GGA+U@@ 0K DFT-MD Simulations were first validated again static

40l Red = GGA+U with MD @ 300 K | compression data
g
S 30 DFT with GGA+U gives good agreement with DAC data
= ol (Olsen, et al., 1985) for ¢-Ce
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DFT-MD simulations were then used to follow the compression isentrope

A from the experimental Hugoniot state
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DFT-MD simulations were then used to follow the compression isentrope

“ \ from the experimental Hugoniot state
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Direct entropy calculations were used at each step to follow the isentrope
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35 GPa, 11.8 Q/CC, 1750K @ Sandia National Laboratories



' . The emergent phase from the initially liquid simulations is €-Ce (tetragonal)

Blue = Pair distribution function of -Ce

Spontaneous freezing is observed Red = Pair distribution function of
along an isentrope in DFT-MD (which solidified Ce
originated from the experimental 2.5¢
Hugoniot state) at ~35 GPa.

2L
The “bump” in sound velocity observed &
experimentally occurs at ~35 GPa. 1.5}
The body centered tetragonal phase 1l
of e-Ce emerges from the liquid.
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DFT-MD simulations with strained lattices were used to extract the

& second-order elastic constants

We perform the DFT molecular dynamics simulations* with the deformed lattice specified by

@ =0+%)-a

For the body-centered tetragonal cell, we employ the two strain tensors

6 O 0 0 6/2 0
8y = lO 0 5/2] or e, = [6/2 0 O]
0 6/2 O 0 0 ¢
with & negative (contraction) or positive (dilation).

Through the generalized Hooke’s law,

g;j = Cijki€xi

application of the first strain tensor and differencing the stresses generated with dilation and contraction
(6 = +/- 0.01) yields Cy3, C15, C43, and Cy4; the second strain tensor yields C;3, Cq3, C33, and Cgg.

*DFT-MD: GGA+U with 54 atoms, 12 electrons in the valence, I'-centered 2x2x2 Monkhorst-Pack grid (8 k-points) @ Ry



DFT-MD simulations agree with experimental observations

of stress-density and sound velocities
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» An experimental observation of solidification has been detected through the recovery

of strength on dynamic compression: elastic wave velocity observed during ramp
compression of liquid.

« DFT-MD simulations exhibit spontaneous freezing of cerium on the experimental
isentrope at a pressure close to the experimental observation.

* The stress, density, longitudinal and bulk sound velocities, and shear modulus and
Poisson ratio are in agreement between calculations and experimental observations.

« Dynamic Solidification of Cerium occurs at or near the equilibrium melt line on the
compression isentrope from an initially liquid state on nano-second time-scales.
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