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2 Introduction and Motivation

Additive Manufacturing (AM)
AM techniques use less material and produce less waste

Can be used to make complex geometries, custom parts

Defects or artifacts could change the performance of
the high explosive (HE)

Robocasting can have variability between parts
designed to be identical due to artifacts or defects

Investigate common AM defects or artifacts in the energetic
material that result from Robocasting
Using Physical Vapor Deposition (PVD) explosive samples as a model
system

Determine experimentally the extent to which AM artifacts could create
hot spots and affect the shock/detonation front of a HE

(Above Images) Optical micrographs of CL-
20 based materials after robocasting that

show common AM artifacts/defects,
including (a) Large triangle void artifact

and (b) small triangular void.



3 PETN Thin Films with Embedded Voids

PVD allows for HE to be deposited with precise dimensions and patterned voids
A shadow mask defines the deposition area to ensure precise control of the HE
dimensions as well as the void geometry.

Different shadow mask used to define the triangular void area on the substrates at different sizes.

Assembly consisted of bringing 2 substrates together to create triangular or diamond shaped voids.

It was observed that any gap between the 2 substrates would result in a failure to detonate

Optical microscope image of a 1 mm
void on a confined substrate.

Proposed substrate setup with (left to right) optical micrograph of a 1 mm triangular setup, proposed 0.5 mm
triangle-shaped void, another orientation of a 0.5 mm triangular void, and 0.5 mm diamond-shaped void.

/\



Framing Camera View

(Left) Static image (Frame 2) taken with framing camera prior to experiment. (Right) Optical microscope
images (40x magnification) of same sample prior to the experiment.
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Images were

recorded at 14 MHz

(1/70 ns) with an

exposure of 10 ns.
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6 Dynamic Images ID

Images were
recorded at 14 MHz
(1/70 ns) with an
exposure of 10 ns.

Detonation occurred through sample. Can observe the detonation front failed on one side upon contact with the void.
The detonation front propagated around the void.
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(Top Left to Right) Frames 4 to 7 overlaid on top of optical microscope image.

(Bottom Left to Right) Frames 8 to 11 overlaid on top of optical microscope image

SF = shock front
DF = detonation front
FD = failed detonation
LR = late reaction

Detonation failed

at the left side of

I the gap. The

shock front jetted
across the void.

p The detonation
propagated

around the void,

but failed in the
damaged, or pre-
shocked material.

SF DF

/\ \,

FD (at gap)
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8 Micromushroom Test

Determine deposition characteristics for
the PETN such that the detonation corner
turning is atypical

"Detonation corner turning" = ability of
detonation front to propagate into unreacted
explosive that is not within the normal path of
the detonation front [1].
Goal is to evaluate corner turning properties as
a function of deposition conditions
Corner turning likely has an effect on hot spot
formation after a shock or detonation passes

Test three different conditions:
Confined PETN slightly above critical detonation
thickness
Confined PETN well above critical detonation
thickness
Unconfined PETN well above critical detonation
thickness

(Top) Processed
framing camera
images of PETN
micromushroom
tests with a stem
width of 1.00 mm
and a thickness of
277 pm [1]. The
individual images
from which these
were taken with a 5
ns exposure time at
33 MHz (1/30 ns) [11

[1] A. S. Tappan, C. D. Yarrington, and R. Knepper, Detonation corner turning in vapor-deposited explosives using the micromushroom

test, AIP Conference Proceedings, 2018, 1979, 100041.

1

Optical micrograph of (Left) confined and (Right I1]) unconfined
PETN micromushroom test sample. These samples are deposited on
1 cm polycarbonate substrates and have 1 mm wide stems.



9 Conclusions
I

Typical AM defects/artifacts should affect the detonation front of an HE
Both the size and shape of the void are likely to affect the detonation front
Jetting i

Preshock in material ahead of detonation (compressed, rubblized)

Partial reaction

Detonation wave interaction after the void

A gap between substrates causes detonation failure

Future work
Developing a new configuration that would eliminate any potential gap
between substrates

Computational models of the experiment

1
I
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Backup Slides



13 Optical Microsco•e Images of Assembly

2000 pm

Optical microscope images (Left) at 40x and (Right) 80x magnification of the assembled experiment. A large triangular shaped
void can be seen in the sample. The gap between the 2 samples has been minimized to prevent possible detonation failure.



1 4 Dynamic Images

Images were

recorded at 14 MHz

(1/70 ns) with an

exposure of 10 ns.
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Composite Image showing the propagation of the detonation front during the experiment.



15 1
(Top Left to Right) Frames 4 to 7 overlaid on top of optical microscope image.

(Bottom Left to Right) Frames 8 to 11 overlaid on top of optical microscope image
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(Top Left to Right) Frames 4 to 7 overlaid on top of optical microscope image.

(Bottom Left to Right) Frames 8 to 11 overlaid on top of optical microscope image



Frames 1 to 11 overlaid on top of optical microscope image. Detonation front can be
observed as a line diagram17 1
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