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Introduction and motivation

Explosive testing is expensive and time-consuming
High-throughput methods are available

Laser-driven shock experiments allow for robotic positioning on optical axis
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Laser-driven flyer

Continuum Powerlite Precision II 9000,
8.9 ns, 2.5 J, pulsed Nd:YAG

o Refurbished, M? increased

Laser driven flyer defines shock pulse
width (> 25 pm) and spot size (~ 1 mm)

o Material choice defines pressure

Flyer characterization with PDV
o ~ 4000 m/s to date

Experiment configuration based on work

by Dana Dlott’s group (UIUC)
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High-Throughput Initiation Experiment used to study shock
initiation of explosives

Laser-based initiation and laser-based diagnostics allow for robotic positioning
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Laser-driven flyer characterization

Launch laser beam profile (in both space and time) defines the quality of the flyer
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‘ Photonic Doppler velocimetry

The PDV microscope is the primary diagnostic for High- Throughput Initiation

Photograph of photonic Optical diagram of the PDV

Doppler velocimetry microscope: F = flyer, MO = microscope
microscope used on the objective, DM = dichroic mirror, LPF =
High-Throughput Initiation long pass filter, OF = optical fiber, BS =
experiment. visible beam splitter, L = lens,and C =

camera.




High-Throughput Initiation Experiment — Flyer Optic

Substrate: Borofloat 33 glass, 13 mm thick
Absorber/light block: Al, 1 um thick

Flyer: Parylene C, 26 um thick

PDV reflector: Al, 50 nm
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Microplate standard geometry used for
High-Throughput Initiation Experiment.

ANSI/SLAS, "1-2004: Microplates — Footprint Dimensions," 2012.

Laser entrance side of Parylene
C flyer optic in HTI assembly.

Flyer side of Parylene C flyer
optic in HTI assembly.




Parylene C flyer characterization shows velocities
up to 4 mm/ys
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Velocity (PDV) versus laser fluence for Parylene C flyers.



Parylene C flyer characterization with framing camera

& -

0 ns, Laser on 150 ns, Flight 300ns, Impact

Framing camera images of Parylene C flyer launch. Images taken at 6.67 MHz (1/150

ns) with an exposure time of 50 ns. SI-LUX used for illumination with bandpass filter

to reduce self-light recorded by camera. The laser can be seen in the second frame I
and impact occurs by the fourth.



HNS samples made by physical vapor deposition ®

PMMA (polymethylmethacrylate) substrate

Substrate rotation

Aluminum PDV reflector (~0.25 um) 7

Shadow mask
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Parylene C flyers launched into HNS at three velocities

Velocity measurement made at front surface of flyer

Velocity data for laser-driven Parylene C flyers launched at three
fluences. Each plot has data from multiple (5 or 6) shots overlaid.
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HNS appears to be building to detonation between
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Graph showing compilation of HNS initiation shots at three different thicknesses, with
three different impact velocities. Plots are time-shifted for clarity.

Olles JD, Wixom RR, Knepper R, Tappan AS. Observations of shock-induced chemistry with subnanosecond resolution. Applied Physics Letters.
2019;114(21):214102.



Conclusions

High-throughput initiation experiment developed based on microplate geometry
High-throughput initiation of HNS conducted with laser-driven Parylene C flyers
HNS appears to be building to detonation between 75 and 119 um

Future work:
o Thicker aluminum PDV reflector

o Other materials
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Framing camera images of laser-driven flyer (Aluminum)

Flyer launch appears to be planar and circular

Framing camera images of laser-driven flyer launch into the camera using a 50 ns
exposure at 20 MHz (1/50 ns).




Flyer characterization (aluminum flyers)
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Velocity versus launch laser fluence shows increase in the flyer-

Velocity versus time data for shocks driven into PMMA by laser-
driven aluminum flyers with thicknesses of 25.4 pm (<3.0 ns)



HNS sample thicknesses

SCT1064, 119 +/- 2 ym
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