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Introduction and motivation

Explosive testing is expensive and time-consuming

High-throughput methods are available

Laser-driven shock experiments allow for robotic positioning on optical axis

Dlott
(2017).
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Laser-driven flyer

Continuum Powerlite Precision II 9000,
8.9 ns, 2.5 J, pulsed Nd:YAG

. Refurbished, M2 increased

Laser driven flyer defines shock pulse
width (> 25 pm) and spot size (— 1 mm)

. Material choice defines pressure

Flyer characterization with PDV

- — 4000 m/s to date

Experiment configuration based on work
by Dana Dlott's group (UIUC)

Borofloat 33 gl
13 mm

Light block
and adhesive

M

Cross-section cartoon of laser driven
flyer used in High-Throughput
Initiation experiment.
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High-Throughput Initiation Experiment used to study shock
initiation of explosives

Laser-based initiation and laser-based diagnostics allow for robotic positioning
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Diagram of optical system for the High-Throughput Initiation experiment.



Laser-driven flyer characterization

Launch laser beam profile (in both space and time) defines the quality of the flyer
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Beam profile of launch laser
at flyer optic focus showing a
high-quality 1.1 mm diameter
top hat profile.

shortest pulse —9 ns

longest pulse —18 ns
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time (s) x 10-9

Photodiode signal showing the
launch laser pulse duration at
the shortest, —9 ns duration with
the pulse stretcher blocked, and
the longest, —18 ns duration with
balanced reflection/transmission
at the pulse stretcher.
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Photonic Doppler velocimetry

The PDV microscope is the primary diagnostic for High-Throughput Initiation

Photograph of photonic
Doppler velocimetry
microscope used on the
High-Throughput Initiation
experiment.

Optical diagram of the PDV
microscope: F = flyer, MO = microscope
objective, DM = dichroic mirror, LPF =
long pass filter, OF = optical fiber, BS =
visible beam splitter, L = lens, and C =
camera.



High-Throughput Initiation Experiment — Flyer Optic

Substrate: Borofloat 33 glass, 13 mm thick

Absorber/light block: Al, 1 µm thick

Flyer: Parylene C, 26µ,m thick

PDV reflector: Al, 50 nm
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High-Throughput Initiation Experiment.
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Laser entrance side of Parylene
C flyer optic in HTI assembly.
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Flyer side of Parylene C flyer
optic in HTI assembly.

ANSI/SLAS, "1-2004: Microplates — Footprint Dimensions," 2012.



Parylene C flyer characterization shows velocities
up to 4 mm/ps
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Parylene C flyer characterization with framing camera

DeHy .165.0s

bix,skire xpesure , 50,

0 ns, Laser on 300ns, Impact

Framing camera images of Parylene C flyer launch. Images taken at 6.67 MHz (1/150
ns) with an exposure time of 50 ns. SI-LUX used for illumination with bandpass filter
to reduce self-light recorded by camera. The laser can be seen in the second frame
and impact occurs by the fourth.



HNS samples made by physical vapor deposition

PMMA (polymethylmethacrylate) substrate

Aluminum PDV reflector (-0.25 lam)

HNS (44, 75, 119 lam)

A

Vapor-deposited HNS
sample on 6.35 mm
PMMA window.
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Parylene C flyers launched into HNS at three velocities

Velocity measurement made at front surface of flyer
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Velocity data for laser-driven Parylene C flyers launched at three

fluences. Each plot has data from multiple (5 or 6) shots overlaid.
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HNS appears to be building to detonation between
75 and 119 pm

Particle velocity measurement made at
Al/PMMA interface
3
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Graph showing compilation of HNS initiation shots at three different thicknesses, with
three different impact velocities. Plots are time-shifted for clarity.

011es showed full detonation
in 120 to 150 pm of HNS at
flyer velocities of -3 mm/ps.

1.5

011es JD, Wixom RR, Knepper R, Tappan AS. Observations of shock-induced chemistry with subnanosecond resolution. Applied Physics Letters.
2019;114(21):214102.



I Conclusions

High-throughput initiation experiment developed based on microplate geometry

High-throughput initiation of HNS conducted with laser-driven Parylene C flyers

HNS appears to be building to detonation between 75 and 119 1.1M.

Future work:
0 Thicker aluminum PDV reflector

° Other materials
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Framing camera images of laser-driven flyer (Aluminum)

Flyer launch appears to be planar and circular
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Framing camera images of laser-driven flyer launch into the camera using a 50 ns
exposure at 20 MHz (1/50 ns).



Flyer characterization (aluminum flyers)

Measurement of pulse
duration (tau) as a
function of Al foil
thickness
0 25.4 i„Lni, <3 ns

° 38.1 i„Lm, 5.8 — 7.0 ns

Fluence: 64 J/cm2

Particle velocity increases
with fluence

Pulse width decreases
with fluence

Impedance matching:

4.0, 6.6, and 8.4 GPa in
PMMA
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Velocity versus time data for shocks driven into PMMA by laser-
driven aluminum flyers with thicknesses of 25.4 lam (<3.0 ns)
and 38.1 lam (7.0 ns).
Velocity versus launch Iaser fluence shows increase in the flyer-
PMMA interface velocity with increasing fluence, and
therefore flyer velocity.The pulse duration (t) shown on the
right axis decreases with increasing
fluence.



I HNS sample thicknesses
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