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Figure 1: Specific power trends for new USA land-based installations, Bollinger [1]
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Explanation 1

more energy and higher capacity factor from the same generator
more consistent and predictable output
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Explanation 2

AEP more sensitive to specific power
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Explanation 3

DLC 1.4 can be run at lower rated wind speed
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Spar Mass

m= (k)(i)(122-)(14)(mmot)

Mroot = CAP 7U,?R3

held constant spar mass scaling

load shape, material, slenderness, 6, Sp R4
load shape, material, slenderness, R, Sp R3
load shape, material, slenderness, 6 R2.67

load shape, material, slenderness, R R1.67

Explanation 3

spar mass may scale as well as R1.67 for same percent percent tip deflection
longer blades on the same generator are lighter than expected
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Explanation 4

quieter rotors and less erosion, or higher A
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Knowledge gaps and problems with low Sp
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Reynolds Numbers, 5 MW Example
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Knowledge Gap 1

0 open source high Re airfoils
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Sandia Centrifuge for High Re Airfoil Design?

QR= 160 m/s
Re = 11,200,000 for 1 m chord DTU Rotating Test Rig
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Knowledge Gap 2

reliability of pitch actuators with greater use
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Prebend

• to realize the most benefits in mass savings, constant 'IT which means (5
increases

• bridges, tunnels, and turning radii
• thick molds and tall manufacturing buildings

Figure 2: Griffin [2]

Knowledge Gap 3

manufacturing and logistics
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Low Cost Carbon Fiber

Material UTS(MPa)/$/kg % UCS(MPag./kg % E(GPa)/$Acg %

Industry
Baseline

147.6 100 -100.3 100 9.6 100

Heavy-Tow
(fu ll-util ization)

180.0 122 -156.9 156 19.2 200

Heavy-Tow
(cu rrent)

137.0 93 -119.4 119 14.6 152

Figure 3: Ennis [3]

Knowledge Gap 4

new materials
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Why Lower Sp?

• higher cf

• predictable output

• lower rated wind speeds

• reduced loads/deflection for DLC 1.4

• spar mass scaling as low as R1.67 instead of R3

• quieter and less erosion, or higher
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Challenges for the Future

• high Re airfoils

• greater pitch actuation

• greater prebend and length presents manufacturing and logistics challenges

• new materials

• other rotor technologies
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