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Specific Power Trends
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Power Curve, 5 MW Example
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Explanation 1

more energy and higher capacity factor from the same generator
more consistent and predictable output
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AEP. 5 MW Example
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Explanation 2

AEP more sensitive to specific power
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2.6 % AEP increase



Rated Wind Speed
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Explanation 3

DLC 1.4 can be run at lower rated wind speed
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Spar Mass
m = (k)(£) () (2) (Mioot)

Moot = CM%PUTQ'/TRg

held constant spar mass scaling

load shape, material, slenderness, §, Sp  R*
load shape, material, slenderness, 4, Sp  R?
load shape, material, slenderness, § B2
load shape, material, slenderness, & RLbt

Explanation 3

spar mass may scale as well as R%7 for same percent percent tip deflection
longer blades on the same generator are lighter than expected



Tip Speed
QR = AU,

QR (m/s)
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Explanation 4

quieter rotors and less erosion, or higher A
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Knowledge gaps and problems with low Sp



Reynolds Numbers, 5 MW Example
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Knowledge Gap 1

@ open source high Re airfoils



Sandia Centrifuge for High Re Airfoil Design?

QR=160m/s
Re = 11,200,000 for 1 m chord DTU Rotating Test Rig
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Pitch Duty Cycle
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Knowledge Gap 2

reliability of pitch actuators with greater use



Prebend

e to realize the most benefits in mass savings, constant <, which means 8
increases

¢ bridges, tunnels, and turning radii
¢ thick molds and tall manufacturing buildings
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Figure 2: Griffin [2]
Knowledge Gap 3

manufacturing and logistics



Low Cost Carbon Fiber

Material | UTS(MPa)/S’kg | % |UCS(MPay$kg| % E(GPa)/$kg %
Ingustey 147.6 100 -100.3 100 96 100
Baseline
Heavy-Tow
tnttesios) 180.0 122 -156.9 156 19.2 200
Heavy-Tow
it 137.0 93 119.4 119 146 152

Figure 3: Ennis [3]

Knowledge Gap 4

new materials
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Why Lower Sp?

higher cf

predictable output

lower rated wind speeds

reduced loads/deflection for DLC 1.4

spar mass scaling as low as R'57 instead of R?
quieter and less erosion, or higher A



Challenges for the Future

high Re airfoils

greater pitch actuation

greater prebend and length presents manufacturing and logistics challenges
new materials

other rotor technologies
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