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Outline

• Motivation
• Insulator-metal transition at high-p and low-T

• Insulator-metal transition at low-p and high-T
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• Reanalysis of multiple-shock conductivity (a) measurements
• Original study included inconsistencies in both the inferred T and

fit to the semiconductor model used to interpret the measured cy

• Comparison of conductivity
with various exchange-
correlation (xc) functionals
• PBE

• vdW-DF1

• vdW-DF2

• Conclusions
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Insulator-metal transition at high-p and low-T

• Shock-ramp technique
enabled experimental access
to liquid-liquid, insulator-
metal transition (LL-IMT)

• Experiments above —250 GPa
show clear evidence of
metallization of deuterium

• Best agreement with nonlocal
xc functionals
• More complex T-dependence

• Not consistent with semi-local
xc functional PBE
• Dissociation occurs at much too

low P
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Insulator-metal transition at low-p and high-T

• Recent precision measurements 100
of the deuterium Hugoniot near
the IMT 90

• Provides unique insight into the 80
dissociation process

70

• Results compared with various
xc functionals
• Nonlocal functionals better 50

describe the onset of dissociation

• These same functionals exhibit a 40

significantly wider P range for
30dissociation to complete
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• Provide means for evaluation of 
20

future theoretical developments 10
and new xc functionals
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Insulator-metal transition at intermediate p and T

• The first experiments to address
the IMT in liquid hydrogen and
deuterium were performed by
Nellis, Weir, and Mitchell in the
1990's

• Gas-gun technique
• Multiple-shock compression at

successively higher P and T states

• Measured electrical conductivity

• Set of experiments provides a
very good test of first-principles
methods
• Probes a regime in which both T

and p (or P) play an important role
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Reanalysis of inferred temperature states

• Nellis et al used two different
methods to infer T and p
• Method 1: Hydrocode

simulation using Kerley EOS

• Method 2: lsentrope
calculation from first shock
state for Ross EOS
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Determination of the peak state of the system

• P is experimentally constrained and does not depend upon the hydrogen/deuterium EOS

• In this regime P depends much more strongly on p than T

• Chose to fix T, then varied p to match experimentally measured P
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Experiment

a
(E2 cm)-1

Keriey03 PBE DF1 DF2

P

(GPa)

T
(K) (g/cm3) (E2 cm)-1 (g/cm3) (E2 an)-1 (g/cm3) (E2 an)-1 (g/cm3)

SLDMS4-D2 0.71 93 2204 1.25 4989 1.397 1.99 1.249 0.30 1.222
SLDMS5-D2 77 121 2987 1.38 8919 1.534 4518 1.437 493 1.359
SLDMS8-D2 417 136 3397 1.44 9970 1.589 5461 1.514 3234 1.455
SLDMS6-H2 2.6 100 1978 0_64 3456 0.710 0.62 0.641 0.11 0.624
SLDMS 13-H2 7.1 105 2093 0.66 4990 0.729 2.32 0.652 0.35 0.636
SLDMS7-H2 135 125 25(57 0.70 9034 0.780 1546 0.722 16.2 0.683
SLDMS9-H2 313 125 2573 0.70 9034 0.781 1546 0.722 16.2 0.683
SLDMS12-H2 2380 142 2984 0_73 10410 0.816 5671 0.777 1693 0.737
SLDMS10-H2 1670 156 3310 0.76 11290 0.840 7061 0.807 3880 0.774
SLDMS 11-H2 2000 183 3951 0.81 13180 0.881 8907 0.854 6551 0.827
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Reanalysis of semiconducting model

• Nellis et al appealed to a simplified semi-
conducting model to infer an energy gap as a
function of p

a = ao exP[—Eg(p)12kB T]

• The limiting conductivity was taken to be a
free parameter
• This results in a negative energy gap for

p > 0.34 mol/cm3

• With the limiting conductivity taken from
experiment the result is more physical
• The gap closes at p — 0.37 mol/cm3
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Predicted conductivity at the peak states

a vs Pressure
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Predicted energy gap at the peak states
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Conductivity and normalized conductivity vs energy gap '
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Conclusions

■ Performed a reanalysis of the Nellis, Weir, and Mitchell experiments
■ Corrected an inconsistency in the inferred T and p states

■ Performed a detailed comparison of the measured a with first-principles
density functional theory using various xc functionals
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■ Results found to be inconsistent with the semi-local xc functional PBE
■ Inconsistency likely stems from P errors associated with the PBE xc functional that result
from premature dissociation

■ Calculated P are too low at these T and p conditions

■ Results found to be in better agreement with non-local vdW functionals

■ Together with previous comparisons at high-T, low-p and low-T, high-p, these
results provide a consistent picture for the IMT over a wide T and p range

nudson, Desjarlais et al, PRB 98, 174110 (2018)


