This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Insulator-metal transition at high-p and low-T

= Shock-ramp technique
enabled experimental access
to liquid-liquid, insulator-
metal transition (LL-IMT)

= Experiments above ~250 GPa
show clear evidence of
metallization of deuterium

= Best agreement with nonlocal
xc functionals

= More complex T-dependence

= Not consistent with semi-local
xc functional PBE

= Dissociation occurs at much too
low P
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Insulator-metal transition at low-p and high-T laboraores
= Recent precision measurements 100 | — Sesame72 -
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Insulator-metal transition at intermediate pand T

* The first experiments to address | | | | et [21.22] semiconducting —
the IMT in liquid hydrogen and Ref [21,22] metallic
deuterium were performed by

Ref [17]
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= Set of experiments provides a
very good test of first-principles

methods
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Reanalysis of inferred temperature states ) @"&.‘1""‘@
= Nellis et al used two different

methods to infer T and p T profiles using th_e two Comparison_ of inferred T from
methods from Nellis et al the two different methods
= Method 1: Hydrocode

simulation using Kerley EOS . . 4500
= Method 2: Isentrope 3000 Hydrogen
calculation from first shock 4000 -
state for Ross EOS 2500 -
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.. g 1500 { & 3000 -
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0 ' ' |
= Reported T is too low and o0 ' 450 500 100 150 200
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Determination of the peak state of the system

= P js experimentally constrained and does not depend upon the hydrogen/deuterium EOS
" |n this regime P depends much more strongly on p than T

" Chose to fix T, then varied p to match experimentally measured P

Kerley03 PBE DFI DF2
o ' o T 0 o o, o o, o ol

Experiment (2 cm)™! (GPa) (K) (g/cm’) (Qem)™! (g/em?) (Qem)™ (g/em’) (Qem)™!  (g/cm?)
SLDMS4-D, 0.71 93 2204 1.25 4989 1.397 1.99 1.249 0.30 1.222
SLDMS5-D; 77 121 2987 1.38 8919 1.534 4518 1.437 493 1.359
SLDMSS-D, 417 136 3397 1.44 9970 1.589 5461 1.514 3234 1.455
SLDMS6-H, 2.6 100 1978 0.64 3456 0.710 0.62 0.641 0.11 0.624
SLDMS13-H, 7.1 105 2093 0.66 4990 0.729 2.32 0.652 0.35 0.636
SLDMS7-H, 135 125 2567 0.70 9034 0.780 1546 0.722 16.2 0.683
SLDMS9-H, 313 125 2573 0.70 9034 0.781 1546 0.722 16.2 0.683
SLDMS12-H, 2380 142 2984 0.73 10410 0.816 5671 0.777 1693 0.737
SLDMS10-H, 1670 156 3310 0.76 11290 0.840 7061 0.807 3880 0.774
SLDMS11-H, 2000 183 3951 0.81 13180 0.881 8907 0.854 6551 0.827

-
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Reanalysis of semiconducting model

Laboratories
3.5
= Nellis et al appealed to a simplified semi-
conducting model to infer an energy gap as a 3r
function of p 251
oL\
0 = 0y eXP[—Eg(,O)/ZkB T] ® o E«(p)=183-49.8p

oo = 1850 (2 cm)~!

= The limiting conductivity was taken to be a
free parameter
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Predicted conductivity at the peak states

o VS Pressure
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Predicted energy gap at the peak states

. Energy gap vs Pressure
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Conductivity and normalized conductivity vs energy gap

o VS Energy gap
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Conclusions

’ National
" Performed a reanalysis of the Nellis, Weir, and Mitchell experiments

" Corrected an inconsistency in the inferred T and p states

" Performed a detailed comparison of the measured o with first-principles
density functional theory using various xc functionals

= Results found to be inconsistent with the semi-local xc functional PBE

" [nconsistency likely stems from P errors associated with the PBE xc functional that result
from premature dissociation

" Calculated P are too low at these T and p conditions

= Results found to be in better agreement with non-local vdW functionals

" Together with previous comparisons at high-T, low-p and low-T, high-p, these
results provide a consistent picture for the IMT over a wide T and p range

Knudson, Desjarlais et al, PRB 98, 174110 (2018)



