This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 6684C

oa aot\s)=29 J.)

ﬂ_l

(x.ﬂldx

Unclassified Unlimited Release Christian R. Trott, - Center for Computing Research
D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles,

D. Hollman, V. Dang Sandia National Laboratories/NM
Q@iaRGy &N

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-4605 PE

W Applications Libraries Frameworks

e — s -
. . TR
4 . L 'y

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

SNL NALU
Wind Turbine CFD

ORNL Raptor
Large Eddy Sim

Kokkos

ORNL Summit

| _ad SNL Astra
IBM Power9 / NVIDIA Volta LANL/SNL Trinity ANL Aurora ARM Architecture

Intel Haswell / Intel KNL Intel Xeon CPUs + Intel Xe Compute

" Kokkos EcoSystem B

s N
Kokkos
Tools

Science and Engineering Applications ||

Trilinos

Kokkos EcoSystem

Kokkos Kernels

Kokkos Core

[Kokkos Remote Spaces

” Kokkos Development Team e

-
= kokkos
ﬁgAlamos Argonne Vs ﬁg?igir?al %OAK RIDGE \‘0‘0 CSCS

NATIONAL LABORATORY NATIONAL LABORATORY laboratories National Laboratory AN

EST.1943

= Dedicated team with a number of staff working most of their time on Kokkos
= Main development team at Sandia in CCR

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

” DOE Machine Announcements e

= Now publicly announced that DOE is buying both AMD and Intel GPUs
= Argonne: Cray with Intel Xeon + Intel Xe Compute
= ORNL: Cray with AMD CPUs + AMD GPUs
= NERSC: Cray with AMD CPUs + NVIDIA GPUs

= Have been planning for this eventuality:

= Kokkos ECP project extended and refocused to include developers at
Argonne and Oak Ridge, staffing is in place

= HIP backend for AMD main development at ORNL
= The current ROCm backend is based on a compiler which is now deprecated ...

= Something else for Intel ;-) main development at ANL
= OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

= Sparta: Production Simulation at Scale @&

= Stochastic PArallel Rarefied-gas Time-
accurate Analyzer SPARTA Weak Scaling
= A direct simulation Monte Carlo code

— 450 gg— —={ —]
= Developers: Steve Plimpton, Stan Moore, & %
; ; 3 350
Michael Gallis 2 300
s & 250

= Only code to have run on all of Trinity 8 200 b P —

= 3 Trillion particle simulation using E EEF —8— —o
both HSW and KNL partition in a g

single MPI run g 8 16 32 64 128 256

= Benchmarked on 16k GPUs on Sierra —S=EosEell =R=RRL —EiRe

= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView

™ Latency Limited Kernels and =
Asynchronous Execution

= Many applications run into latency limits

= Targeting 1000 timesteps or solver iterations per second

= Need to optimize for kernels of 20us and less runtime

= MiniEM: >3000 Kernel calls per solve => 30k/s to achieve 10 solves/s
= Underlying Programming Models have limits

= CUDA launch latency 3us (Skylake) to 8us (Power9)
= Kokkos has additional overhead

= OpenMP max loop rate about 1us/per loop
= Allocation rate limited
= CUDA UVM allocation takes up to 200us!

:Approaches to Address This -—.

= More asynchronous execution to hide launch latency

= No APl change, improve implementation (i.e. limit fences etc.)

= May need hints from user to use latency instead of throughput opt path
= Fine Grained Tasking Interface

= Potentially write big kernels with inner dependencies via tasking
= Execution Space Instances

= First step support CUDA streams
= Fuse Kernels

= Real fusion is user level, but maybe help with interfaces
= Kernel Graph Abstraction

= Exploit CUDA graphs for now
= Coarse Grained Tasking

~ Asynchronicity Semantics =

= ParallelReduce/Scan

double result;

2 Dot Products

// parallel_for is always Synchronous CUDA N=100k
parallel_for("AsynchronousFor",N,F); 50
// parallel_reduce with Scalar as result is Synchronous 45
parallel_reduce("SynchronousSum"”,N,Fr,result);
// parallel_reduce with Reducer constructed from scalar is synchronous 40
parallel_reduce("Synchronousmax",N,Fr,Max<double>(result)); 35
// parallel_reduce with any type of view as result is asynchronous 2 an
Kokkos: :Vview<double,CudaHostPinnedSpace> result_v("R"); -
parallel_reduce("AsynchronousSum",N,Fr,result_v); o 20
// Even with unmanaged view, and wrapped into Reducer £ 20
Kokkos: :view<double,HostSpace> result_hv(&result); =
parallel_reduce("Asynchronousmax" ,N,Fr,Max<double>(result_hv)); 15
// Scans without total result argument are asynchronous 10
parallel_scan("AsynchronousScan",N,Fs); 5

Rule of Thumb: Everything is asynchronous unless reducingintoa | ©

scalar value! mScalar mView

” Improved Fine Grained Tasking s

= Generalization of TaskScheduler abstraction to allow user to Fibonacci 30 (V100)

be generic with respect to scheduling strategy and queue .

= |mplementation of new queues and scheduling strategies:

»

= Single shared LIFO Queue (this was the old implementation)
= Multiple shared LIFO Queues with LIFO work stealing

($)]

EAN

= Chase-Lev minimal contention LIFO with tail (FIFO) stealing

= Potentially more
= Reorganization of Task, Future, TaskQueue data structures to
accommodate flexible requirements from the TaskScheduler
= Forinstance, some scheduling strategies require additional II

storage in the Task

w

|V|I||I0n Tasks per Second
N

Questions: David Hollman m Old Single Queue mNew Single Queue

= Multi Queue m Chase-Leve MQ

” CUDA Stream Interop B

= |nitial step to full coarse grained tasking
= Discuss in more detail in future directions
= For now: make Kokkos dispatch use user CUDA streams
= Allows for overlapping kernels: best for large work per iteration, low count

// Create two Cuda instances from streams
cudaStream_t streaml,stream?;
cudaStreamCreate(&streaml) ;
cudaStreamCreate(&stream?2) ;

Kokkos::Cuda cudal(streaml), cuda2(stream?2);

// Run two kernels which can overlap
parallel_for("F1",RangePolicy<Kokkos: :Cuda>(cudal,N),Fl);
parallel_for("F2",RangePolicy<Kokkos: :Cuda>(cuda2,N),F2);
fence();

” CUDA Graphs =

1 Lebecatwiee
Launch 3 Kernels

-:- -: - Host Launch 3-10us

CUDA graphs: launch multiple kernels as one - Device Grid Setup 1us

- ‘I I Compute Kernel

= CUDA has interface to record Kernel launches, and then dispatch in bulk

= Can resolve dependencies according to streams

/l Start by initating stream capture
cudaStreamBeginCapture(stream1);

// Build stream work as usual A<<< ..., stream1 >>>(); ;;/uli:laGrahphInstatntlioelxte(&inshta1r(1)%et,.graph);
cudaEventRecord(e1, stream1); B<<< ..., stream1 >>>(); p a_u:(_:_oe'f;:goall _+e+grap e
cudaStreamWaitEvent(stream2, e1); C<<< ..., stream2 >>>(); or(int i=0; |)| .)
cudaEventRecord(e2, stream?): cudaGraphLaunch(instance, stream);

cudaStreamWaitEvent(stream1, e2); D<<< ..., stream1 >>>();
/l Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);

” Kokkos Options To Leverage Graphs &,

= |nterOp option: make the CUDA API capture Kokkos parallel for etc. correct

= Capture in a coarse grained scope:
P g P 3 Kernels 10
Kokkos: :view<double> reduce_result("red"); RGEXGCUteS
auto graph = Kokkos::capture_kernel_graph([=] O {
Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) {...}); 600
Kokkos::parallel_reduce("A",N, 500
KOKKOS_LAMBDA(const int i, double& r) {...},reduce_result); __
Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) { % 400
double r = reduce_result(); ;300
b £ 200
¥ 100 I I I
for(int 1=0;i<10;i++) { d
Kokkos: :execute_graph(graph); _\g,b \V\Q} NZ
graph.fence(Q); QO O

N

} Y
= Problem: what if | want an MPI call in this loop?
mRaw mCUDA Graph

~ Coarse Grained Tasking R

= Somewhat awkward to capture the whole region
= Expressing dependencies indirectly just via ExecSpace instances is suboptimal

= Make parallel dispatch return “futures” and execution policies consume
dependencies instead

auto fut_1 = parallel for(RangePolicy<>(“Functl”, @, N), f1);

auto fut_2a = parallel for(RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);

auto fut_2b = parallel for(RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);

auto fut_3 = parallel for(RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);

= Could build graph under the hood and submit upon fence?
= What about eager execution?

" |nsert MPI via host_spawn?

= Aligning Kokkos with the C++ Standard &

= Long term goal: move capabilities from Kokkos into the ISO standard
= Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

Propose for C++

Kokkos Legacy C++ Standard

Implemented legacy
capabilities in terms of Back port to compilers we got
new C++ features C++ Backport

" C++ Atomic Ref B

= atomic_ref<T> in C++20

= Provides atomics with all capabilities of atomics in Kokkos
= Atomic ops on “POD” types with operators

= Wrap non-atomic object
= atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

” C++ MDSpan R

= Provides customization points which allow all things we can do with Kokkos::View
= Better design of internals though! => Easier to write custom layouts. ©
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks ©
= More verbose interface though ®
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= 4 Template Parameters
= Scalar Type
= Extents ->rank and compile timensions
= Layout
= Accessor -> return type of operator, storage handle, and access function

View<int**[5],LayoutLeft,MemoryTraits<Atomic>>

basic_mdspan<int,extents<dynamic_extent,dynamic_extent,5>,layout_left,accessor_atomic<int>>

” C++ MDSpan R

= How to get MemorySpaces?
= accessor_memspace<int,CudaSpace>
" mdspan is non-owning?
= Derive Kokkos View from MDSpan
= store the extra reference count handle
= Provide allocating constructors
= QOr: use accessor with shared_ptr as data handle ...
= What about subviews?
= subspan is part of the proposal
= https://github.com/ORNL/cpp-proposals-pub/tree/master/P0009

” C++ BLAS O

= Sandia leads a proposal supported by various parties (including Intel, NVIDIA,

AMD and ARM)
= Goals: scalar agnostic, layout aware, support parallelism
= Approach:

= Mdspan (and mdarray) as arguments
= Model after C++ parallel algorithms

Iy =3.0*A%Xx;

matrix_vector product(par, scaled_view(3.0, A), X, y);
Hy=3.0*A*x+20"y;

matrix_vector product(par, scaled_view(3.0, A), x, scaled_view(2.0, y), y);
/l'y = transpose(A) * Xx;

matrix_vector product(par, transpose_view(A), X, y);

