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: Kokkos Development Team

: kokkos
- Sandia OAKt RIDGEx:4

 EST 1943  

4 cscsLosAlamos Argonne I nil National
NATIONAL LABORATORY

NATIONAL t ACCRA-OR Laboratories National Laboratory

• Dedicated team with a number of staff working most of their time on Kokkos

• Main development team at Sandia in CCR

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter



: DOE Machine Announcements =
• Now publicly announced that DOE is buying both AMD and Intel GPUs

• Argonne: Cray with Intel Xeon + Intel Xe Compute

• ORNL: Cray with AMD CPUs + AMD GPUs

• NERSC: Cray with AMD CPUs + NVIDIA GPUs

• Have been planning for this eventuality:

• Kokkos ECP project extended and refocused to include developers at

Argonne and Oak Ridge, staffing is in place

• HIP backend for AMD main development at ORNL

The current ROCm backend is based on a compiler which is now deprecated ...

• Something else for Intel ;-) main development at ANL

• OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia



:Sparta: Production Simulation at Scale
• Stochastic PArallel Rarefied-gas Time-

accurate Analyzer

• A direct simulation Monte Carlo code

• Developers: Steve Plimpton, Stan Moore,

Michael Gallis

• Only code to have run on all of Trinity

• 3 Trillion particle simulation using

both HSW and KNL partition in a

single MPI run

• Benchmarked on 16k GPUs on Sierra

• Production runs now at 5k GPUs

• Co-Designed Kokkos::ScatterView
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ẁ Latency Limited Kernels and
Asynchronous Execution

• Many applications run into latency limits

• Targeting 1000 timesteps or solver iterations per second

• Need to optimize for kernels of 20us and less runtime

• MiniEM: >3000 Kernel calls per solve => 30k/s to achieve 10 solves/s

• Underlying Programming Models have limits

• CUDA launch latency 3us (Skylake) to 8us (Power9)

Kokkos has additional overhead

• OpenMP max loop rate about lus/per loop

• Allocation rate limited

• CUDA UVM allocation takes up to 200us!
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,, Approaches to Address This
• More asynchronous execution to hide launch latency

• No API change, improve implementation (i.e. limit fences etc.)

• May need hints from user to use latency instead of throughput opt path

• Fine Grained Tasking Interface

• Potentially write big kernels with inner dependencies via tasking

• Execution Space Instances

• First step support CUDA streams

• Fuse Kernels

• Real fusion is user level, but maybe help with interfaces

• Kernel Graph Abstraction

• Exploit CUDA graphs for now

• Coarse Grained Tasking
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pw Asynchronicity Semanticsha

• ParallelReduce/Scan
double result;
// parallel_for is always synchronous

2 Dot Products
CUDA N=100k

parallel_for("AsynchronousFor",N,F); 50
// parallel_reduce with Scalar as result is synchronous
parallel_reduce("synchronoussum",N,Fr,result);

45

// parallel_reduce with Reducer constructed from scalar is synchronous 40

parallel_reduce("synchronousmax",N,Fr,max<double>(result)); 35
// parallel_reduce with any type of view as result is asynchronous
Kokkos::view<double,cudaHostRinnedspace> result_v("R");

(/ 30

parallel_reduce("Asynchronoussum",N,Fr,result_v); — 25a)
// Even with unmanaged view, and wrapped into Reducer
Kokkos::view<double,Hostspace> result_hv(&result);
parallel_reduce("Asynchronousmax",N,Fr,max<double>(result_hv));
// scans without total result argument are asynchronous
parallel_scan("Asynchronousscan",N,Fs);

Rule of Thumb: Everything is asynchronous unless reducing into a
scalar value!
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7. Improved Fine Grained Taskingr ik

• Generalization of TaskScheduler abstraction to allow user to

be generic with respect to scheduling strategy and queue

• Implementation of new queues and scheduling strategies:

Fibonacci 30 (V100)
7

6
• Single shared LIFO Queue (this was the old implementation) -0c

5o• Multiple shared LIFO Queues with LIFO work stealing a)
u)

• Chase-Lev minimal contention LIFO with tail (FIFO) stealing o_ '(15 4

co
• Potentially more co 3

co
• Reorganization of Task, Future, TaskQueue data structures to I—

g 
accommodate flexible requirements from the TaskScheduler _._ 2

• For instance, some scheduling strategies require additional 1

storage in the Task o

Questions: David Hollman

II
• Old Single Queue • New Single Queue

• Multi Queue • Chase-Leve MQ



: CUDA Stream lnterop =

• Initial step to full coarse grained tasking

• Discuss in more detail in future directions

• For now: make Kokkos dispatch use user CUDA streams

• Allows for overlapping kernels: best for large work per iteration, low count

// create two cuda instances from streams
cudastream_t streaml,stream2;
cudastreamcreate(&streaml);
cudastreamcreate(&stream2);
kokkos::cuda cudal(streaml), cuda2(stream2);

// Run two kernels which can overlap
para11e1_for("F1",RangePolicy<kokkos::cuda>(cudal,N),F1);
para11e1_for(T2",RangePolicy<kokkos::cuda>(cuda2,N),F2);
fence();



CUDA Graphs
Launch 3 Kernels

CUDA graphs: launch multiple kernels as one

Host Launch 3-10us

Device Grid Setup 1 us

Compute Kernel

■ CUDA has interface to record Kernel launches, and then dispatch in bulk

■ Can resolve dependencies according to streams
// Start by initating stream capture
cudastreamBeginCapture(streaml);
// Build stream work as usual A<<< streaml >>>();
cudaEventRecord(el , streaml); B<<< streaml >>>();
cudaStreamWaitEvent(stream2, el ); C<<< stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(streaml , e2); D<<< streaml >>>();
// Now convert the stream to a graph
cudaStreamEndCapture(streaml , &graph);

cudaGraphlnstantiate(&instance, graph);
// Launch executable graph 100 times
for(int i=0; i<100; i++)
cudaGraphLaunch(instance, stream);



Kokkos Options To Leverage Graphs

• InterOp option: make the CUDA API capture Kokkos parallel for etc. correct

• Capture in a coarse grained scope:

Kokkos::view< > reduce_result( );
auto graph = Kokkos::capture_kernel_graph([=] () {

Kokkos::parallel_for( ,N,KOKKOS_LAMBDA( onst int i) 1...1);
Kokkos::parallel_reduce("A",N,
KOKKOS_LAMBDA(_onst int i, cloth. & r) {...},reduce_result);

600

500

Kokkos::parallel_for("A",N,KoKKos_LAMBDA(const int i) { cl 400
doubl r = reduce_result(); 300

}); i= 200

1); 100

for(int i= ;i< ;i++) { 0

}

Kokkos::execute_graph(graph);
graph.fence();

• Problem: what if I want an MPI call in this loop?

3 Kernels 10
ReExecutes

.k 'cbA° '<zo
.c.0

Ae',q0

• Raw • CUDA Graph



:Coarse Grained Tasking =

• Somewhat awkward to capture the whole region

• Expressing dependencies indirectly just via ExecSpace instances is suboptimal

• Make parallel dispatch return "futures" and execution policies consume
dependencies instead

auto fut_1 = parallel_for( RangePolicy<>("Funct1", 0, N), fl );

auto fut_2a = parallel_for( RangePolicy<>("Funct2a", fut_1„ N), f2a);
auto fut_2b = parallel_for( RangePolicy<>("Funct2b", fut_1„ N), f2b);

auto fut_3 = parallel_for( RangePolicy<>("Funct3", all(fut_2a,fut2_b), N), f3);
fence(fut_3);

• Could build graph under the hood and submit upon fence?

• What about eager execution?

• Insert MPI via host_spawn?



: Aligning Kokkos with the C++ Standard
• Long term goal: move capabilities from Kokkos into the ISO standard

• Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

t

Kokkos Legacy
a

Implemented legacy
capabilities in terms of
new C++ features

rm. Kokkoluslill

C++ Backport Ammob-

Propose for C++

t

C++ Standard

J

=

Back port to compilers we got



C++ Atomic Ref
■ atomic ref<T> in C++20

■ Provides atomics with all capabilities of atomics in Kokkos

Atomic ops on "POD" types with operators

Wrap non-atomic object

■ atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);



7.
C++ MDSpan =

tAik

• Provides customization points which allow all things we can do with Kokkos::View

• Better design of internals though! => Easier to write custom layouts. ©

• Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks ©

• More verbose interface though ®

• We hope will land early in the cycle for C++23 (i.e. early in 2020)

• 4 Template Parameters

• Scalar Type

• Extents -> rank and compile timensions

• Layout

• Accessor -> return type of operator, storage handle, and access function

view<int**[5],Layouneft,memoryTraits<Atomic»
=
basic_mdspan< ,extents<dynamic_extent,dynamic_extent, >,layout_left,accessor_atomic< »



: C++ MDSpan =

• How to get MemorySpaces?

• accessor memspace<int,CudaSpace>

• mdspan is non-owning?

• Derive Kokkos View from MDSpan

• store the extra reference count handle

• Provide allocating constructors

• Or: use accessor with shared_ptr as data handle ...

• What about subviews?

• subspan is part of the proposal

• https://github.com/ORNL/cpp-proposals-pub/tree/master/P0009 



: C++ BLAS =

• Sandia leads a proposal supported by various parties (including Intel, NVIDIA,
AMD and ARM)

• Goals: scalar agnostic, layout aware, support parallelism

• Approach:

• Mdspan (and mdarray) as arguments

• Model after C++ parallel algorithms

// y = 3.0 *A* x;
matrix_vector_product(par, scaled view( , A), x, y);
// y = 3.0 *A* x + 2.0 * y;
matrix_vector_product(par, scaled view( , A), x, scaled_view(2.0, y), y);
// y = transpose(A) * x;
matrix vector product(par, transpose view(A), x, y);




