
Unclassified Unlimited Release
D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles,

D. Hollman, V. Dang

(1)1iWiiitr ELM&

aa 4.0.2)17. k.:21.:_-- C__1) fa.044)

Gr2

f T(z)* •f(X5O)111=-- M(1141.-13 14
4, (30 ao

f e

Kokkos for Performance Portability:
Recent and Upcoming Capabilities

Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-4605 PE

SAND2019-6684C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Applications

SNL NALU
Wind Turbine CFD

ORNL Summit

.43
rt

!BCE

•

• !

SNL LAMMPS
Molecular Dynamics

IBM Power9 / NVIDIA Volta LANL/SNL Trinity
Intel Haswell / Intel KNL

Libraries Frameworks

al=

UT Uintah
Combustine

ANL Aurora
Intel Xeon CPUs + Intel Xe Compute

ORNL Raptor
Large Eddy Sim

1

ISMI*211
SNL Astra
ARM Architecture

Kokkos EcoSystem

Kokkos
Tools

Debugging

Profiling

Tuning
A

Science and Engineering Applications

Kokkos EcoSysiem

Kokkos Kernels

Linear Algebra Kernels Graph Kernels

Kokkos Corc
Parallel

Execution r Parallcl Data
Structures

Kokkos
Support

Documentalion

Tulorials

Booicamps

App support

Kokkos Remote Spaces

PGAS 10

Multi-Core Afaiw-Core APU

49

ui

au + GPU

: Kokkos Development Team

: kokkos
- Sandia OAKt RIDGEx:4

 EST 1943

4 cscsLosAlamos Argonne I nil National
NATIONAL LABORATORY

NATIONAL t ACCRA-OR Laboratories National Laboratory

• Dedicated team with a number of staff working most of their time on Kokkos

• Main development team at Sandia in CCR

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

: DOE Machine Announcements =
• Now publicly announced that DOE is buying both AMD and Intel GPUs

• Argonne: Cray with Intel Xeon + Intel Xe Compute

• ORNL: Cray with AMD CPUs + AMD GPUs

• NERSC: Cray with AMD CPUs + NVIDIA GPUs

• Have been planning for this eventuality:

• Kokkos ECP project extended and refocused to include developers at

Argonne and Oak Ridge, staffing is in place

• HIP backend for AMD main development at ORNL

The current ROCm backend is based on a compiler which is now deprecated ...

• Something else for Intel ;-) main development at ANL

• OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

:Sparta: Production Simulation at Scale
• Stochastic PArallel Rarefied-gas Time-

accurate Analyzer

• A direct simulation Monte Carlo code

• Developers: Steve Plimpton, Stan Moore,

Michael Gallis

• Only code to have run on all of Trinity

• 3 Trillion particle simulation using

both HSW and KNL partition in a

single MPI run

• Benchmarked on 16k GPUs on Sierra

• Production runs now at 5k GPUs

• Co-Designed Kokkos::ScatterView

500

D
450

SPARTA Weak Scaling

=

cL0 400

6-0 350

z • 300
ir)
o_ 250
a)
::,) 200 AL—Ar------.........................A

E 1 5°

,t 100
a)
o_

50

0
4 8 16 32 64 128 256

—40—Haswell —Jii— KN L —0— V100

ẁ Latency Limited Kernels and
Asynchronous Execution

• Many applications run into latency limits

• Targeting 1000 timesteps or solver iterations per second

• Need to optimize for kernels of 20us and less runtime

• MiniEM: >3000 Kernel calls per solve => 30k/s to achieve 10 solves/s

• Underlying Programming Models have limits

• CUDA launch latency 3us (Skylake) to 8us (Power9)

Kokkos has additional overhead

• OpenMP max loop rate about lus/per loop

• Allocation rate limited

• CUDA UVM allocation takes up to 200us!

=

,, Approaches to Address This
• More asynchronous execution to hide launch latency

• No API change, improve implementation (i.e. limit fences etc.)

• May need hints from user to use latency instead of throughput opt path

• Fine Grained Tasking Interface

• Potentially write big kernels with inner dependencies via tasking

• Execution Space Instances

• First step support CUDA streams

• Fuse Kernels

• Real fusion is user level, but maybe help with interfaces

• Kernel Graph Abstraction

• Exploit CUDA graphs for now

• Coarse Grained Tasking

=

pw Asynchronicity Semanticsha

• ParallelReduce/Scan
double result;
// parallel_for is always synchronous

2 Dot Products
CUDA N=100k

parallel_for("AsynchronousFor",N,F); 50
// parallel_reduce with Scalar as result is synchronous
parallel_reduce("synchronoussum",N,Fr,result);

45

// parallel_reduce with Reducer constructed from scalar is synchronous 40

parallel_reduce("synchronousmax",N,Fr,max<double>(result)); 35
// parallel_reduce with any type of view as result is asynchronous
Kokkos::view<double,cudaHostRinnedspace> result_v("R");

(/ 30

parallel_reduce("Asynchronoussum",N,Fr,result_v); — 25a)
// Even with unmanaged view, and wrapped into Reducer
Kokkos::view<double,Hostspace> result_hv(&result);
parallel_reduce("Asynchronousmax",N,Fr,max<double>(result_hv));
// scans without total result argument are asynchronous
parallel_scan("Asynchronousscan",N,Fs);

Rule of Thumb: Everything is asynchronous unless reducing into a
scalar value!

20

15

10

5

0

• Scalar • View

7. Improved Fine Grained Taskingr ik

• Generalization of TaskScheduler abstraction to allow user to

be generic with respect to scheduling strategy and queue

• Implementation of new queues and scheduling strategies:

Fibonacci 30 (V100)
7

6
• Single shared LIFO Queue (this was the old implementation) -0c

5o• Multiple shared LIFO Queues with LIFO work stealing a)
u)

• Chase-Lev minimal contention LIFO with tail (FIFO) stealing o_ '(15 4

co
• Potentially more co 3

co
• Reorganization of Task, Future, TaskQueue data structures to I—

g
accommodate flexible requirements from the TaskScheduler _._ 2

• For instance, some scheduling strategies require additional 1

storage in the Task o

Questions: David Hollman

II
• Old Single Queue • New Single Queue

• Multi Queue • Chase-Leve MQ

: CUDA Stream lnterop =

• Initial step to full coarse grained tasking

• Discuss in more detail in future directions

• For now: make Kokkos dispatch use user CUDA streams

• Allows for overlapping kernels: best for large work per iteration, low count

// create two cuda instances from streams
cudastream_t streaml,stream2;
cudastreamcreate(&streaml);
cudastreamcreate(&stream2);
kokkos::cuda cudal(streaml), cuda2(stream2);

// Run two kernels which can overlap
para11e1_for("F1",RangePolicy<kokkos::cuda>(cudal,N),F1);
para11e1_for(T2",RangePolicy<kokkos::cuda>(cuda2,N),F2);
fence();

CUDA Graphs
Launch 3 Kernels

CUDA graphs: launch multiple kernels as one

Host Launch 3-10us

Device Grid Setup 1 us

Compute Kernel

■ CUDA has interface to record Kernel launches, and then dispatch in bulk

■ Can resolve dependencies according to streams
// Start by initating stream capture
cudastreamBeginCapture(streaml);
// Build stream work as usual A<<< streaml >>>();
cudaEventRecord(el , streaml); B<<< streaml >>>();
cudaStreamWaitEvent(stream2, el); C<<< stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(streaml , e2); D<<< streaml >>>();
// Now convert the stream to a graph
cudaStreamEndCapture(streaml , &graph);

cudaGraphlnstantiate(&instance, graph);
// Launch executable graph 100 times
for(int i=0; i<100; i++)
cudaGraphLaunch(instance, stream);

Kokkos Options To Leverage Graphs

• InterOp option: make the CUDA API capture Kokkos parallel for etc. correct

• Capture in a coarse grained scope:

Kokkos::view< > reduce_result();
auto graph = Kokkos::capture_kernel_graph([=] () {

Kokkos::parallel_for(,N,KOKKOS_LAMBDA(onst int i) 1...1);
Kokkos::parallel_reduce("A",N,
KOKKOS_LAMBDA(_onst int i, cloth. & r) {...},reduce_result);

600

500

Kokkos::parallel_for("A",N,KoKKos_LAMBDA(const int i) { cl 400
doubl r = reduce_result(); 300

}); i= 200

1); 100

for(int i= ;i< ;i++) { 0

}

Kokkos::execute_graph(graph);
graph.fence();

• Problem: what if I want an MPI call in this loop?

3 Kernels 10
ReExecutes

.k 'cbA° '<zo
.c.0

Ae',q0

• Raw • CUDA Graph

:Coarse Grained Tasking =

• Somewhat awkward to capture the whole region

• Expressing dependencies indirectly just via ExecSpace instances is suboptimal

• Make parallel dispatch return "futures" and execution policies consume
dependencies instead

auto fut_1 = parallel_for(RangePolicy<>("Funct1", 0, N), fl);

auto fut_2a = parallel_for(RangePolicy<>("Funct2a", fut_1„ N), f2a);
auto fut_2b = parallel_for(RangePolicy<>("Funct2b", fut_1„ N), f2b);

auto fut_3 = parallel_for(RangePolicy<>("Funct3", all(fut_2a,fut2_b), N), f3);
fence(fut_3);

• Could build graph under the hood and submit upon fence?

• What about eager execution?

• Insert MPI via host_spawn?

: Aligning Kokkos with the C++ Standard
• Long term goal: move capabilities from Kokkos into the ISO standard

• Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

t

Kokkos Legacy
a

Implemented legacy
capabilities in terms of
new C++ features

rm. Kokkoluslill

C++ Backport Ammob-

Propose for C++

t

C++ Standard

J

=

Back port to compilers we got

C++ Atomic Ref
■ atomic ref<T> in C++20

■ Provides atomics with all capabilities of atomics in Kokkos

Atomic ops on "POD" types with operators

Wrap non-atomic object

■ atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

7.
C++ MDSpan =

tAik

• Provides customization points which allow all things we can do with Kokkos::View

• Better design of internals though! => Easier to write custom layouts. ©

• Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks ©

• More verbose interface though ®

• We hope will land early in the cycle for C++23 (i.e. early in 2020)

• 4 Template Parameters

• Scalar Type

• Extents -> rank and compile timensions

• Layout

• Accessor -> return type of operator, storage handle, and access function

view<int**[5],Layouneft,memoryTraits<Atomic»
=
basic_mdspan< ,extents<dynamic_extent,dynamic_extent, >,layout_left,accessor_atomic< »

: C++ MDSpan =

• How to get MemorySpaces?

• accessor memspace<int,CudaSpace>

• mdspan is non-owning?

• Derive Kokkos View from MDSpan

• store the extra reference count handle

• Provide allocating constructors

• Or: use accessor with shared_ptr as data handle ...

• What about subviews?

• subspan is part of the proposal

• https://github.com/ORNL/cpp-proposals-pub/tree/master/P0009

: C++ BLAS =

• Sandia leads a proposal supported by various parties (including Intel, NVIDIA,
AMD and ARM)

• Goals: scalar agnostic, layout aware, support parallelism

• Approach:

• Mdspan (and mdarray) as arguments

• Model after C++ parallel algorithms

// y = 3.0 *A* x;
matrix_vector_product(par, scaled view(, A), x, y);
// y = 3.0 *A* x + 2.0 * y;
matrix_vector_product(par, scaled view(, A), x, scaled_view(2.0, y), y);
// y = transpose(A) * x;
matrix vector product(par, transpose view(A), x, y);

