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Research Motivation and Overview - I
ECCOMAS Models, Parameters and Results

The prediction of wind energy is a stochastic forcing Case L i‘:m”latm" S EIC;SIJt Cl°t$,t
problem, built upon randomness and uncertainty Ime:tsec) r(‘ours') (relative)

Evaluate the potential for Multilevel-Multifidelity OpenFAST 1 0.42
Coarse 100x50x50 80 240

(MLMF) Uncertainty Quantification (UQ) methods to

improve the predictive capabilities of computational
models Medium 200x100x100 160 9260 2304

Fine 400x200x200 400 6860 16500

Scope: Multilevel-Multifidelity Uncertainty
Quantification of Wind Farms

Maniaci, D.C. et al., “Multilevel uncertainty quantification of a wind
turbine large eddy simulation model.” 7" European Conference on
Computational Fluid Dynamics. 2018. 6.5m/s

- Multilevel-Multifidelity study (MLLMF) using Nalu-Wind 0.97 kg/m3
and OpenFAST (3 mesh levels and 2 model fidelities)

Uncertainty Minimum Maximum

- Demonstrated significant improvement in estimator
efficiency compared to standard Monte-Carlo methods

Robertson, A. et al. “Assessment of Wind Parameter Sensitivity on
Extreme and Fatigue Wind Turbine Loads.” 36” Wind Energy
Symposium. American Institute of Aeronautics and Astronautics, 2018.
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- Sensitivity analysis of 18 atmospheric inflow parameters on
turbine fatigue loads

- Most sensitive parameters included shear, turbulence : 10 100 1000
standard deviation in wind direction Equivalent HF simulations




Research Motivation and Overview

Research Motivation and Objectives

- Utilize experimental data to inform simulation model inputs

- Compare uncertainty, estimator variance and convergence rate between simulation and experiment
Scope: IEA Task 31: Verification & Validation and Uncertainty Quantification

-  Uncertainty quantification can better inform the high-fidelity model validation process by reducing estimator variance and identifying the
most sensitive parameters within models

Measured V', Simulated V',




MLMF Models Overview and Hierarchy

Estimator Variance (Mean Square Error) = Satnj
and residual bias (deterministic error)

MG =<3N. 08  E[(0MS - Ele])’] = + (E[Qu — Q1)?

Multilevel-Multifidelity methodology determines the
optimal resource allocation within a hierarchy of models
for a limited computational budget to reduce estimator
variance

Definitions

- Multifidelity refers to phenomenon characterization
and closure approximations

= Multilevel refers to discretization levels and resolution
controls

Strategy

- Resource allocation is informed by model correlations
and relative computational model costs

- Utilize all model results in a collective fashion. Do not
‘inform then neglect’.
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MLMF Models Overview and Hierarchy _ I

Model Hierarchy Nalu-Wind MLMF Model Hierarchy and Computational Cost Chart I
—Open—source L.LES code with Model Mode.led M_esh CPU | Computational Run Time
actuator line/disc models and Physics Size s CO;t (hrs) :
blade-resolved capability Power | Loads (core-hours)
WindSE Empirical Wake Model

. . (o) FAST-AeroDyn+TurbSi
2D /3D RANS model simulation [k eroblyn+iurbsim
code for complex terrain FAST.Farm w/o ABL

OpenFAST- AeroDyn-TurbSim Vortex Method Free Wake

Nalu-Wind Actuator Disc

-Wind turbine simulation model
using Blade-Element/Momentum [EYS IRV I T al

(BEM) theory

Coarse 23,000
Sl L Medium 48,000
-Wind farm-scale simulation Fine 108,000
model for multiple turbine
configurations



SWiFT Experiment Overview and UQ

Scaled Wind Farm Technology Facility (SWiFT)

- Ability to characterize the uncertainty of
atmospheric inflow parameters, turbine parameters and
wake characteristics

- Open-source information and data repository
(A2e: Data Archive Portal)

Inflow Measurements Turbine Measurements
a V (sonic) Aerodynamic power
P U_eo (cup) Rotor speed
P U_eo (nacelle) Aerodynamic torque
RH Vr (sonic) Rotor thrust
T WD (sonic) Individual blade root loads
Tl (sonic) WD (vane) (instantaneous)

U_oo (sonic) Individual blade loading

U (sonic) profile (instantaneous)

Nacelle measured wind
direction

Nacelle measured wind
speed

Yaw heading

Yaw misalignment
Blade pitch

Rotor azimuth
Nacelle acceleration

Wake Measurements
DTU Spinner Lidar

Wake identification
and tracking

Turbulence
estimators



SWiFT Experiment Overview and UQ
Bin and cdf distributions from experimental data

List of measured experimental values %
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9 I Current UQ Study Overview _ I

Characterization of input uncertainties through assimilation of data Propagation of input uncertainties to response Qol I

* Prior distributions based on a priori knowledge * DPush forward of posterior distributions

* Observational data (experiments, reference solutions) = infer posterior ~ * Compute statistics that reflect goals of forward propagation UQ
distributions process (i.e., moments, failure probabilities) ]

* Use of data can reduce uncertainty in objective constraints
(priors are constrained)

* Design using prior uncertainties can be overly conservative

* Reduced uncertainty of data-informed UQ can produce designs
with greater performance

Forward Propagation Workflow
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Current UQ Study Overview

Current UQ Study Objectives

- Increase number of simulated aleatory uncertain variables; focus on generator power
instead of fatigue loads

Dakota-OpenFAST-TurbSim model

- Dakota: Sandia-based UQ and optimization software
List of Analyzed Data Sets

SWiFT Experimental Data

- 973 experimental 10-min bins from wake steering experiment; included bins have
active turbines and present data in all needed channels for entire 10-min period

Parametric Simulation Study

- 973 simulated 10-min bins with parametric list inputs set to 10-min bin experimental
values (10-min means)

UQ Forward Propagation Study

E 7000 simulated 10-min bins with aleatory uncertain inputs set to 10-min bin
experimental values (mean and standard deviation)

Simulated Aleatory Uncertain
Variables

Wind Speed

Turbulence Intensity (Tl)

Vertical Wind Power law
Exponent

Nacelle Yaw Offset
Air Density

Generator Torque Constant
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Current UQ Study Results

Results

Power curve comparison between
SWiFT experimental results, parametric
simulation and forward UQ
propagation studies.

- 12-18% global over-prediction
for simulated generator power
compared to experimental results

- 11-23% global over-prediction
of simulated generator power standard
deviation compared to experimental
results
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Current UQ Study Results

Results

Estimator variance comparison between SWilFT experimental results, parametric simulation and forward
UQ propagation studies for generator power

= Estimator error convergence rate between experiment and parametric simulation rate is within
5%0; experiment has lower estimator variance

- Estimator error convergence rate is significantly slower, 37% less than experiment, for the
forward UQ simulation study

Convergence of Estimator Variance Comparison
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Future Research Steps

Incorporate other models into MLMF research framework

- WindSE, FAST.Farm, Nalu-Wind (coarse, medium, fine resolution meshes)
Application of other UQ methods beyond forward UQ

Inverse UQ

= Mapping of input parameters to match model outputs. Can be used to inform
model changes.

Sensitivity Analysis

- Polynomial chaos expansion (PCE) method determines most sensitive input
parameters for model output variance

Optimization under Certainty (OUU)

- ~ Optimization problem with adjustments for model and input parameter
uncertainties

UQ Research Development
- Compound efficiencies (i.e. enhanced multifidelity control variates)

- Address complexities with component-based approach (i.e. Mixed epistemic-
aleatory UQ)
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Multilevel-control variate method comparison

(Eldred, M. S.)
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