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3 Research Motivation and Overview

The prediction of wind energy is a stochastic forcing
problem, built upon randomness and uncertainty

Evaluate the potential for Multilevel-Multifidelity
(MLMF) Uncertainty Quantification (UQ) methods to
improve the predictive capabilities of computational
models

Scope: Multilevel-Multifidelity Uncertainty
Quantification of Wind Farms

•
ECCOMAS Models, Parameters and Results

Case Mesh size Simulation
time (sec)

CPUs Cost
(CPU-
hours)

Cost
(relative)

OpenFAST 500 1 0.42 1

Coarse 100x50x50 2000 80 240 576

Medium 200x100x100 2000 160 960 2304

Fine 400x200x200 2000 400 6860 16500

Maniaci, D.C. et al., "Multilevel uncertainty quantification of a wind
turbine large edd,T simulation model." 7th European Conference on

Uncertainty Minimum Maximum

Speed 6.5 m/s 7.5 m/sComputational Fiuid Dynamics. 2018.

Multilevel-Multifidelity study (MLMF) using Nalu-Wind Density 0.97 kg/m3 1.19 k/m3

and OpenFAST (3 mesh levels and 2 model fidelities) Yaw -25° 25°

Demonstrated significant improvement in estimator
efficiency compared to standard Monte-Carlo methods

Robertson, A. et al. 'Assessment of Wind Parameter Sensitivity on
Extreme and Fatigue Wind Turbine Loads." 36th Wind Energy
Symposium. American Institute of Aeronautics and Astronautics, 2018.

Sensitivity analysis of 18 atmospheric inflow parameters on
turbine fatigue loads

Most sensitive parameters included shear, turbulence
standard deviation in wind direction
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4 Research Motivation and Overview

Research Motivation and Objectives

Utilize experimental data to inform simulation model inputs

Compare uncertainty, estimator variance and convergence rate between simulation and experiment

Scope: IEA Task 31: Verification & Validation and Uncertainty Quantification

Uncertainty quantification can better inform the high-fidelity model validation process by reducing estimator variance and identifying the
most sensitive parameters within models
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5 MLMF Models Overview and Hierarchy

Estimator Variance (Mean Square Error) =
and residual bias (deterministic error)

E [(MN — E[Q])21 = + (E[Qm Q])2
1-1114C _ vN n(i)
tCM,N Lai="1`‹M

Multilevel-Multifidelity methodology determines the
optimal resource allocation within a hierarchy of models
for a limited computational budget to reduce estimator
variance

Definitions

Multifidelity refers to phenomenon characterization
and closure approximations

Multilevel refers to discretization levels and resolution
controls

Strategy

Resource allocation is informed by model correlations
and relative computational model costs

Utilize all model results in a collective fashion. Do not
`inform then neglect'.

•
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6 MLMF Models Overview and Hierarchy

Model Hierarchy Nalu-Wind

-Open-source LES code with
actuator line/disc models and
blade-resolved capability

WindSE

-2D/3D RANS model simulation
code for complex terrain

OpenFAST-AeroDyn-TurbSim

-Wind turbine simulation model
using Blade-Element/Momentum
(BEM) theory

FAST.Farm

-Wind farm-scale simulation
model for multiple turbine
configurations

•

MLMF Model Hierarchy and Computational Cost Chart
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Empirical Wake Model

OpenFAST-AeroDyn+TurbSim

FAST.Farm w/o ABL

Vortex Method Free Wake

Nalu-Wind Actuator Disc

Nalu-Wind Actuator Line

Coarse

Medium

Fine

Modeled

Physics

Mesh
Size

CPU

s

Power Loads

x 1

1x -

x 2

x x 0.1e6 16

x x 11.7e6 768

x x 11.7e6 768

x x 22.4e6 768

x x 40.8e6 768

Computational

Cost

(core-hours)

Run Time

(hrs)
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7 SWiFT Experiment Overview and UQ

Scaled Wind Farm Technology Facility (SWiFT)

Ability to characterize the uncertainty of
atmospheric inflow parameters, turbine parameters and
wake characteristics

Open-source information and data repository
(A2e: Data Archive Portal)

Inflow Measurements
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U (sonic)

✓ (sonic)

U 00 (cup)

U 00 (nacelle)

Vr (sonic)

WD (sonic)

WD (vane)

Turbine Measurements

Aerodynamic power

Rotor speed

Aerodynamic torque

Rotor thrust

Individual blade root loads
(instantaneous)

Individual blade loading
profile (instantaneous)

Nacelle measured wind
direction

Nacelle measured wind
speed

Yaw heading

Yaw misalignment

Blade pitch

Rotor azimuth

Nacelle acceleration

•

Wake Measurements

DTU Spinner Lidar

Wake identification

and tracking

Turbulence

estimators



8 SWiFT Experiment Overview and UQ

List of measured experimental values

Measurand

a

RH

T

TI (sonic)

U, (sonic)

U (sonic)

V (sonic)

U, (cup)

U_ (nacelle)

Vr (sonic)

WD (sonic)

WD (vane)

units

1.88 x 10-
3

0.89 0.21

kg/m3 7.9 x 10-4 0.0731 1.08

Pa 1.53 1.71 x 10- 89500
3

2.01 4.49 46.8

K 0.212 0.0733 289

1.23 x 10- 1.02 0.12
3

m/s 0.0439 0.207 6.82

m/s 0.01 0.207 4.82

m/s 0.01 0.207 4.82

m/s 0.20 2.93 6.82

m/s 0.50 7.33 6.82

1.75 86 2.0

1.22 0.69 176
0

1.20 0.68 176

Bin and cdf distributions from experimental data
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9 r Current UQ Study Overview

Characterization of input uncertainties through assimilation of data
• Prior distributions based on a ptioti knowledge

• Observational data (experiments, reference solutions) 4 infer posterior
distributions

• Use of data can reduce uncertainty in objective constraints
(priors are constrained)

• Design using prior uncertainties can be overly conservative
• Reduced uncertainty of data-informed UQ can produce designs

with greater performance

r

Propagation of input uncertainties to response QoI
• Push forward of posterior distributions
• Compute statistics that reflect goals of forward propagation UQ

process (i.e., moments, failure probabilities)

Forward Propagation Workflow

5

41k•--
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opagation
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(Eldred, M. S.)
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10 Current UQ Study Overview

Current UQ Study Objectives

Increase number of simulated aleatory uncertain variables; focus on generator power
instead of fatigue loads

Dakota-OpenFAST-TurbSim model

Dakota: Sandia-based UQ and optimization software

List of Analyzed Data Sets

SWiFT Experimental Data

973 experimental 10-min bins from wake steering experiment; included bins have
active turbines and present data in all needed channels for entire 10-min period

Parametric Simulation Study

973 simulated 10-min bins with parametric list inputs set to 10-min bin experimental
values (10-min means)

UQ Forward Propagation Study

7000 simulated 10-min bins with aleatory uncertain inputs set to 10-min bin
experimental values (mean and standard deviation)

•

Simulated Aleatory Uncertain
Variables

Wind Speed

Turbulence Intensity (TI)

Vertical Wind Power law
Exponent

Nacelle Yaw Offset

Air Density

Generator Torque Constant



11 Current UQ Study Results

Results

Power curve comparison between
SWiFT experimental results, parametric
simulation and forward UQ
propagation studies.

12-18% global over-prediction
for simulated generator power
compared to experimental results

11-23% global over-prediction
of simulated generator power standard
deviation compared to experimental
results

•
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12 Current UQ Study Results

Results

Estimator variance comparison between SWiFT experimental results, parametric simulation and forward
UQ propagation studies for generator power

Estimator error convergence rate between experiment and parametric simulation rate is within
5%; experiment has lower estimator variance

Estimator error convergence rate is significantly slower, 37% less than experiment, for the
forward UQ simulation study
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13 Future Research Steps

Incorporate other models into MLMF research framework

WindSE, FAST.Farm, Nalu-Wind (coarse, medium, fine resolution meshes)

Application of other UQ methods beyond forward UQ

Inverse UQ

Mapping of input parameters to match model outputs. Can be used to inform
model changes.

Sensitivity Analysis

Polynomial chaos expansion (PCE) method determines most sensitive input
parameters for model output variance

Optimization under Certainty (OUU)

Optimization problem with adjustments for model and input parameter
uncertainties

UQ Research Development

Compound efficiencies (i.e. enhanced multifidelity control variates)

Address complexities with component-based approach (i.e. Mixed epistemic-
aleatory UQ)
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