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Background

" Accurate equation of state (EOS) models for various materials are needed as input into high-level shock physics
codes

*The EOS is typically defined in terms of the Helmholtz free energy, which 1s often split into 3 terms:

A(p,T) = Ap(p) + A;(p,T) + A.(p,T)

! !

Cold Curve Thermal Electronic

*The cold curve is used as an input into the CRIS model, which can be obtained from theory, experiment, or

both

“The output of the CRIS model includes the first two terms of the Helmholtz free energy equation: Ag(p) +
A;(p,T), which can then be added to the thermal electronic term for a full EOS

*The CRIS model has previously been used to develop the equation of state for metals (Au, Mo, Al, Ta, Pb, 1,
Cu, W), gases (H, D,, N, O, C, CO, CH,, Xe, Ar), and other materials (Basalt, Ice, CaCO,, SlOZ)

Thermal Tonic |



The CRIS Model

*Calculates thermodynamic properties by expanding about a hard sphere reference system

*First we start with the free energy of the hard sphere reference fluid Ag

*Then we add the first order term: () = ﬁ fTM d(r,n)g(r,mMr1

* ¢(r,n) = scaled cold curve, used as the mteractlon potential
* g(r,n) = radial distribution function (RDF)
* 1 = packing fraction, 0y = hard sphere diameter

* 1y = cutoff radius determined by solving the normalization condition: 1 = — f i g(r,mr1
*Up to first order, we have: A = Ay + N{¢),
=0 -

*We can then calculate the hard sphere diameter by minimizing: (%)
V,T,N

*The 2°d order corrections are defined as:
* Fluctuation correction:

© AA; = —NkT@ e [T (2) gt andn
C f@) = C“"Z)

* Soft sphere correction:

*\ 2
* A, = —NkT2mp foao (%) g(r,n)rdr

*The Helmholtz free energy of the system is defined as: A = Ay + N{(¢p)o + AA; + AA,

KERLEY, G. I. (1980). PERTURBATION THEORY AND THE THERMODYNAMIC PROPERTIES OF FLUIDS. II. THE CRIS MODEL. THE JOURNAL OF CHEMICAL PHYSICS, 73(1), 478-486.



Challenges with the CRIS model L
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g(x,m) does not represent the hard sphere RDF well over the range of integration
AA, integrates x<1, and there is a pole in g(x,n) in this regime
The fit to Z is good for n < 0.5, but is slightly inaccurate for n > 0.5
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e 7 is refit (first 3 coefficients are the same) so that it is consistent with the g(x,n) approximation: go(1,1) = L (
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Improving the RDF
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Effects of Changing the RDF
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* We used the Lennard-Jones (L]) potential as a test case, since we know the exact potential

* At lower densities, the relative effect of the RDF 1s not as important since the ideal gas term is
dominant

* The new RDF improves the pressure, and 1s more accurate in the liquid regime than the old RDF

* The new RDF makes the estimate of the critical point worse
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Summary & Conclusions

*The CRIS model has been used for decades at institutions around the world
for developing equations of state for various materials

*However, the CRIS model inaccurately models the RDF for the hard spheres

*We improved the RDFPL‘}sing a 51 order polynomial function and added
higher order terms to ~er O make it consistent

*The improved RDF more accurately models the 1sotherms of the L] fluid,
compared to molecular dynamics

*Unfortunately, the critical point of the L] fluid is more over-estimated with
the new RDF

*Since the critical point 1s extremely sensitive to small changes in the free
energy, future work may involve fitting the RDF to have the EOS better
match the vapor dome, while maintaining accurate isotherms




Any Questions?
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