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2 Background [ILd

oAccurate equation of state (EOS) models for various materials are needed as input into high-level shock physics
codes

oThe KOS is typically defined in terms of the Helmholtz free energy, which is often split into 3 terms:

A(p,T) = A0(p) + Ai(p,T) + Ajp,T)

Cold Curve Thermal Electronic

Thermal Ionic

oThe cold curve is used as an input into the CRIS model, which can be obtained from theory, experiment, or
both

oThe output of the CRIS model includes the first two terms of the Helmholtz free energy equation: A0 (p) +
Ai(p,T), which can then be added to the thermal electronic term for a full EOS

oThe CRIS model has previously been used to develop the equation of state for metals (Au, Mo, Al, Ta, Pb, Ti,
Cu, W), gases (H, D2, N, O, C, CO, CH4, Xe, Ar), and other materials (Basalt, Ice, CaCO3, Si02)



3 I The CRIS Model

• Calculates thermodynamic properties by expanding about a hard sphere reference system

•First we start with the free energy of the hard sphere reference fluid A0

112m rm
•Then we add the first order term: (440 = 

3 
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0 
01;s(r,n)g(r,71)r—l-dr

• 0(r,17) = scaled cold curve, used as the interaction potential
• g (r, n) = radial distribution function (RDF)
• 77 = packing fraction, ac, = hard sphere diameter

• rM = cutoff radius determined by solving the normalization condition: 1 =

•Up to first order, we have: A = A0 + N(0)0
a A

•We can then calculate the hard sphere diameter by minimizing:
un)V,T,N

A/27 r
fo g(r,n)r—ldr
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•The 2nd order corrections are defined as:
• Fluctuation correction:

• AA1 = —NkT —
Ahrc 

f
r 
—
dr 
f
n* 

4) f erDc177
311 (To r 77 

g(r, 
•f 07) = Tz)

• Soft sphere correction:

AA2 = —NkT2n-p (f 2i ) g(r, rr)r2 dr

•The Helmholtz free energy of the system is defined as: A = A0 + N(0)0 + AA, + AA2

KERLEY, G. I. (1980). PERTURBATION THEORY AND THE THERMODYNAMIC PROPERTIES OF FLUIDS. II. THE CRIS MODEL. THE JOURNAL OF CHEMICAL PHYSICS, 73(1), 478-486.
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• g(x, 77) does not represent the hard sphere RDF well over the range of integration

• AA2 integrates x<1, and there is a pole in g(x, n) in this regime

• The fit to Z is good for n < 0.5, but is slightly inaccurate for n > 0.5
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ALDER, 13. J., & \VAIN \VRIGf 1111, T. E. (1960). SAT:DIES IN MOLECLLAR DYNAMICS. 11. BEHAVIOR 041 A SMALL NUMBER OF ELASTIC SPIIERES. 4 HI ( JOURN4 OF CHMIIC PM:SVCS', 33(5), 1439-1451.

KO1A1-4A, J., 12A13.11,1, S., & MAIAJ EN:SKY, A. (2004). ACC:CRATE EQ11:AT1ON OF ST,VfE OF THE HARD SPIIERE F1.1111) IN S111A13IAH .AND ME4FAS111A131.1-1 REGIONS. P H IC,- IL CH I =v111.) I 'In: CH I 1'H5:1 ICS , (1/M, 2335-2340.
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• g(x, n) is fit to a 5th order polynomial for x c [1:xm ]: g(x, = go(1, (x — i)i

• Coefficients are fixed due to asymptotic limits:

• Coo = 1 and Cio = 0 for i > 0 since 
g(x,n) 

= 1 when n = o and Coi = 0 for j > 0 since 
g(x,n) 

= 1 when x = 1
go MO goad?)
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9 3 1
• C-11 =— 2T C21 = 211c, C31 = 217c, C41 = C51 = O from the density expansion as n o

0.6

• 20 unconstrained parameters remain

3yi v1-4,10,14 7, 71)1 C• Z is refit (first 3 coefficients are the same) so that it is consistent with the g(x,77) approximation: g0(1, =
471 (77c-71)+ Lk=1
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• We used the Lennard-Jones (LJ) potential as a test case, since we know the exact potential
• At lower densities, the relative effect of the RDF is not as important since the ideal gas term is

dominant

• The new RDF improves the pressure, and is more accurate in the liquid regime than the old RDF

• The new RDF makes the estimate of the critical point worse
VERLET, L, & WEIS, J. J. (1972). EQUILIBRIUM THEORY OF SIMPLE LIQUIDS. PHYSICAL REVIEI V A, 5(2), 939.

POTOFF, J. J., & PANAGIOTOPOULOS, A. Z. (2000). SURFACE TENSION OF THE THREE-DIMENSIONAL LENNARD-JONES FLUID FROM HISTOGRAM-REWEIGHTING MONTE CARLO SIMULATIONS. THE JOURNAL OF CHEMICAL PHYSICS, 112(14), 6411-6415.

CAILLOL, J. M. (1998). CRITICAL-POINT OF THE LENNARD-JONES FLUID: A FINITE-SIZE SCALING STUDY. THE JOURNAL OF CHEMICAL PHYSICS, 109(12), 4885-4893.



7 1 Summary & Conclusions

•The CRIS model has been used for decades at institutions around the world
for developing equations of state for various materials

•However, the CRIS model inaccurately models the RDF for the hard spheres

•We improved the RDF using a 5th order polynomial function and added
PV

higher order terms to 
NkT 

to make it consistent

•The improved RDF more accurately models the isotherms of the LJ fluid,
compared to molecular dynamics

•Unfortunately, the critical point of the LJ fluid is more over-estimated with
the new RDF

•Since the critical point is extremely sensitive to small changes in the free
energy, future work may involve fitting the RDF to have the EOS better
match the vapor dome, while maintaining accurate isotherms
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11 I Isotherms of the LJ Fluid
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VERLET, L., & WEIS, J. J. (1972). EQUILIBRIUM THEORY OF SIMPLE LIQUIDS. PHYSICAL REVIEW A, 5(2), 939.



12 I Vapor Dome of the LJ Fluid
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