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Motivation and Objectives

Facts on Crystalline and Amorphous HNAB:

• Amorphous energetic materials, such as hexanitroazobenzene

(HNAB), have been experimentally observed to undergo crystallization

when subjected to sufficient shock compression.

• Experimentally characterizing the shock-induced crystallization of
A-HNAB is difficult:

• HNAB has three (3) crystalline polymorphs.
• Equation-of-state (EOS) not well studied for crystalline structures

and unknown for the amorphous state.

• Crystallization occurs at the nanosecond timescales.

Left: Vapor deposited A-HNAB. Right: Shocked A-HNAB samples via flyer plate
experiments illustrating shock induced crystallization.

• Simulating shock behavior and microstructural changes under shock

compression for HNAB is suitable for atomistic simulations:
• Length- and time-scales appropriate for molecular dynamics (MD)

to study transition pathways for all HNAB polymorphs.

Objectives of this work:

1. Calculate shock Hugoniot EOS for all HNAB polymorphs using

ReaxFF-MD to probe the role of atomic configuration on macro-
scale shock properties. Is an amorphous Hugoniot feasible?

2. Perform virtual diffraction calculations to elucidate possible
structural changes occurring during simulated shock

compression that may also provide a one-to-one comparison with

shock experiments.
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Melt crystalline structures to
create amorphous structures!

Approach: 1. Set V < Vo and equilibrate to - 300 K

2. Ramp system T and track pressure, energy, density

3. Solve for T where Rankine-Hugoniot condition is true

V V0
Series of compressed states for all polymorphs

Mass Conservation:

Momentum Conservation:

Energy Conservation:

Pop = P10) u1)

P1 = PoDul
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Us - Up Hugoniot Relation

Particle velocity

Simulating Virtual Diffraction from MD
1. 1VD simulations of hydrostatic compression for HNAB polymorphs

2. Create a mesh of reciprocal space within simulation domain

• 3D rectilinear mesh with fine resolution eliminates any need for prior

knowledge of the crystal structure

3. Compute diffraction intensities at each point on the reciprocal space

mesh using the structure factor equations
• Diffraction conditions satisfied with nodes located on Ewald sphere

4. Analysis and visualization of diffraction intensities to produce

Selected Area Electron Diffraction (SAED) patterns.

AK) = LphK)F*(1(

Lp = Lorentz-Polarization Factor (only XRD)
F = Structure Facture
K = Reciprocal Lattice Point (Relp)

-Structure Factor:

F(K) = jj exp(27-ti K •
j=1

N = Number of Atoms in Simulation

rj

= Atomic Scattering Factor

= Atom Position
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All atoms are
sampled at each
reciprocal point.

Predicting Shock Hugoniot Relationships
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• Crystalline: Each HNAB polymorph has its own unique shock

relationship and behavior at high pressures.

• Amorphous: Non-negligible macro-scale variations in results
from both points-of-view due to atomic configuration only.

• Calculated behavior provides EOS input and sensitivity for device-

level calculations and guide to experimental analysis.

Elucidating Structural Changes during Shock
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• Crystalline "peaks"
becoming smeared.

• Formation of

secondary rings.
• Outward expansion

due to compression.

• Similar final "double
ring" patterns.

• Possibly indicating a

reordering of the
compact structure.

• XRD and RDF
calculations may help

clarify this observation.
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