ABSTRACT

Fusion energy promises nearly unlimited, clean energy; one approach to fusion energy production employs lasers
to compress fusion fuel to conditions similar to those in the sun. Unfortunately, in the presence of a wide variety
of energy loss mechanisms, obtaining a net gain in energy remains a challenge. The mixing of cooler materials
into hot regions can spoil the production of fusion energy. Two ways that cooling occurs is from the mixing of
two ion species, or by conduction from the electron species. An existing kinetic model for studying the mixing
of ions, is the multi-component BGK (McBGK) equation which describes the ionic heat transfer. One way to add
the effects of heat conduction from the electrons is by solving a kinetic equation which is not a computationally
tractable approach due to the considerable difference in timescales for the electron and ion species. Instead, hy-
drodynamic equations of motion for the electron species are derived directly from the McBGK equation and are
used to determine how the electrons transfer heat to the ion species. We plan to use our model to aid in the design
and interpretation of experiments at Sandia National Laboratories that are being performed on the Z Machine, a
large pulsed-power facility.

MOTIVATION AND EXISTING MODEL

Setup of Experiment: Consider a periodic system with two materials separated by interfaces, which can be seen
in the figure below. This system is then flash-heated by x-rays to create a two species plasma.
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Figure 1: Diagram of a two-material periodic system separated by interfaces.

Goal of Experiment: Measure the the atomic mixing rate for the different materials across the interface after
ionization (plasma interdiffusion). This will yield insight on the efficiency of fusion experiments where interface
mixing is present (e.g. inertial confinement fusion).

Model and Goal of this Work: A multi-componenet BGK (McBGK) model [2] is currently being used to describe
this experiment. The McBGK model is currently purely classical and we aim to generate a set of semi-classical
hydrodynamic equations of motion to include effects from the electron species.

In the early stages of this work, we considered using a "two-temperature model"[3] (TTM) to introduce the elec-
tron temperature to the McBGK equation. The two-temperature model has the form
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Where equations (2) and (3) would be replaced by the McBGK kinetic model. The issue with this model is that
it has no opinion of the electron density or momentum which is important for our problem. Another choice of
model for the electron species is to derive a set of equations directly from the McBGK model to ensure consistency,
which we will refer to as the "electron temperature model" (ETM).
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Figure 2: Possible choices for adding dynamic electron effects to existing model.

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

ELECTRON TEMPERATURE MODEL (ETM)

A model for describing mixing that occurs on this time and length scale is the multi-component BGK model - a
kinetic equation of the form
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where f; = f;(r,p, t) is a phase-space distribution function for species i, a; = a;(r, t) is the acceleration of a particle
of species i at position r at time ¢. Additionally, 7;; is a velocity independent collision rate between species i and
j and M;; is a target equilibrium distribution function for species i and j defined as
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where n;,u;; and T;; are all functions of r and ¢. We define the electron kinetic equation as
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From this equation we derive hydrodynamic equations of motion for which the solutions will be inputs for the
forces acting on the ionic species. Moments of the target equilibrium have the following form
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For a single electron species, the equilibrium, or target, distribution is given by a Fermi-Dirac distribution given
by
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where p =1/k;, T, and u is the chemical potential. The k — th order Fermi-Dirac integrals are given by
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and are used to determine the moments of the Fermi-Dirac equilibrium distribution (10) similar to the Maxwell-

Boltzmann distribtuion. In the above expression x is in energy units.

We define our macroscopic quantities as
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Where 7, is the mean density, u, is the mean velocity, K, is the mean kinetic energy density, p. is the scalar pres-
sure, and q, is the relative heat flux vector. Taking moments of equation (6), by multiplying by powers of v and
integrating gives the following set of hydrodynamic equations
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where we have used the classical scalar pressure p, = n,T,.

To include the quantum properties from the electrons (i.e. fermions), we instead consider a Fermi-Dirac equilib-
rium distribution which will be considered when computing the right hand side of the above equation and in the
closures for pressure. Therefore, equations (17) - (19) become
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The red portions in the above equations indicate where the quantum effects will appear. A Chapman-Enskog
expansion will be done to include quantum effects in the transport coefficients.
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QUANTUM MECHANICAL OPINION OF KINETIC ENERGY

To generate a temperature equation from (22) that has a similar structure to (1) - (3) we require an opinion on the
total kinetic energy to generate the specific heat, C,. The total kinetic energy for quantum systems is comprised
of two parts. The ideal part, denoted K, and the excess part, denoted K,,. The total kinetic energy has the form

K =Ky+ K,,. (23)
From [4], K, and K., can be computed via
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Here 0 is the degeneracy parameter, Er is the Fermi energy, f.. is the excess free-energy, and I is the coulomb
coupling parameter.

From K, in (24) we have a energy-temperature relationship and the following plot highlights the temperature
regimes in which quantum mechanical effects are important to consider.

Electron Ideal Kinetic Energy vs. Temperature
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Figure 4: Brighter regions in left figure show where quantum effects are non-negligible. Brighter regions in the
right figure show where particles are more strongly coupled.
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