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Talking Points for Today

➢ Lattice Metamaterials for N ovel Structural Designs

➢ Capturing Localization Effects through a Generalized
Continuum Approach

➢ Topology Optimization for Structural Design

➢ Shear Band Localization and Dual-Lattice Metamaterials
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Lattice Metamaterials for Novel Structural Designs
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What Are Lattice Metamaterials?

• Exceptional weight-specific stiffness/strength[1]
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•High specific energy absorption — Ultralight energy absorbers[2]

[1] Zhang, et al. Ultralight, ultrastiff mechanical metamaterials. Science, 2014. 344: p. 1373-1377.

[2] Colin Bonatti and Mohr, D. Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticio, yield strength and specific energy absorption. Acta Materialia, 2019. 164: p. 301-321.
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Elastomers

stretch-
dominated
lattices

• Solid HDDA, bend-dominated foam

• Graphene elastomers (19)
+ Ultralight metallic microlattices (20)
* Carbon nanotube foams (21 )
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Localization in Lattice Structures due to
Fabrication Defects and Geometrical Effects

• Lattice metamaterials in compression fail predominantly through
localization

• Shear bands cause sharp drop in load capacity — limiting energy dissipation

• Compression bands allow for progressive collapse of lattice

• Ideal energy dissipating behavior involves homogeneous plastic deformation
before progressive collapse at a high plateau stress
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[1] Al-Ketan, et al. Topology-mechanical property relationship of 3.1) printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 2018. 19: p. 167-183.

[2] Maskery, et al. A mechanical property evaluation of graded density Al-Sil 0-Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering A, 2016. 670: p. 264-274. 5



Design Considerations with Lattice
Metamaterials is non-intuitive
• Design approaches with traditional materials don't apply to lattice metamaterials — non-intuitive

• Combining different lattice topologies can allow for tailoring of properties and control of localization[11

[1]
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• Topology optimization provides rigorous way to explore design space

• Multiscale topology optimization approaches can account for microstructure but are based on homogenization
• Becomes computationally very expensive for nonlinear problems

• Homogeneous deformation of RVE cannot capture localization
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[1] Pham, et al. Damage-tolerant architected materials inspired by crystal microstructure. Nature, 2019. 565: p. 305-311. 6



Capturing Localization Effects Through a
Generalized Continuum Approach
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Accounting for Underlying "Microstructure"
With Additional DOFs: Micromorphic Approac

Undeformed
Configuration, t = 0
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,„=

Accounts for rotation and stretching
Geometry agnostic

Constitutive parameters contain microstructure info

• Can capture significant gradients in macroscopic loading over microstructural features which cause
• Size dependent mechanical properties

• Dispersion effects in wave propagation

• Accumulation of plastic deformation in microstructure during localization

[1] Eringen, A. Cemal. Mechanics of micromorphic continua. Springer, Berlin, Heidelberg, 1968. 8



Calibrating Micromorphic Models to Specific
Microstructures

Physical systern

Direct Numerical Shnulation
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Example: Low Velocity Impact in Foam
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Example: Low Velocity Impact in Foam
Classical

100x200 elernents

Direct
400x800 elements
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Example: Low Velocity Impact in Foam
Classical

100x201:1 elements

Direct
400x800 elements
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Example: Low Velocity Impact in Foam
Classical

100x200 elements
Direct

400x800 elements
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Capturing Strain Softening and Localization:
Regularization Through a Micromorphic Model
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• Localization phenomena can lead to a loss of ellipticity in governing PDEs for classical continua

• Micromorphic continua involve length scale which regularizes this effect — suitable for simulating localization phenomena
in lattice metamaterials

• Regularizing effect can be gained by replacing the microstrain tensor with a scalar plastic microstrain variable — only 1
additional DOF per continuum point

• Finite deformation theory considering elastoplastic softening and scalar plastic microstrain variable[11:

Free Energy
1

x) 2 K.A.K0(C6 xl X) = Oref(Ce I ice) + —
2

K = Vx A= AI Ore f re, a)

Micro omentum Balance

acroscale free energy

V.bo — ao = itAx — Hx+ = — x+1246ix=

= N/A/II
[1] Anand, et al. A large-dfformation gradient theory for elastic-plastic materials: Strain sqftening and regularkation of shear bands. International Journal of Plasticity, 2012. 30-31: p. 116-1434



Shear Band Localization • Los Alamos
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• Localization bands have finite width dictated by micromorphic parameters A,H,Z and hardening/softening
modulus

• Inhomogeneous deformation induced by finite deformation kinematics (necking/bulging)
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Topology Optimization for Structural Designs



Combining Functionalities of FCC (Energy
Dissipation) & BCC (No Softening) Lattices
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FCC Lattice
• Higher stiffness and yield stress
• Peak stress reached —5% strain

• Severe softening after peak stress

E —) 16.55 GPa amax —) 37.07 MPa
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BCC Lattice
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[1] Al-Ketan, et al. Topology-mechanical propery relationship of 31) printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 2018. 19: p. 167-183.
121 Al-Ketan, et al. The effect of architecture on the mechanical ProPerties of cellular structures based on the IWP minimal surface. Tournal of Materials Research, 2018. 33: 0. 343-359.
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The Math Slide:
Formulating the Optimization Problem

s. t.

Density-Based Parameterization
0 < pe < 1

BCC Phase pe = 0

FCC Phase P e = 1

SIMP Interpolation

Ae = Pl:AFCC + (1 — Pe)PABCC
A E {E, oj„ amax, Kh}

Design Problem
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NATIONAF ST 19.

mi
x
n fo (x) = — f f viiP dv dt Maximize Plastic Work

t no

1 
nele

f1(x) = 1 — — pe(x)ve V. f < 0 Volume Fraction Constrain (BCC Phase)
e

nele nipt

f2w= III(crerr
e r=1

Rk (ilk I ilk —1 , ck I ck —1 , 
P(x)

ty) nA.) = ,

Hk (iik 1 iik-1, ck 1 ck —1 , 
P(x)

= 0)

0 < X' < 1

1
a

— 0 < 0
Maximum Accumulated Plastic Strain Constraint

k = 1,2, ... , N

k = 1,2, ... , N

Implicit Global Constraint

Explicit Global Constraint

Box Constraint 18



Adjoint Sensitivity Analysis: Defining Local and
Global Variables and Associated Constraints

Global Variables and Constraints 
Scalar plastic microstrain, F-bar elements for incompressibility
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Local Variables and Constraints 
Finite deformation isotropic elasto-viscoplasticity with micromorphic regularization
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Examples for Shear Band Localization and
Dual Lattice Optimization



Naive Combination of Lattices Leads to
Improvement in Energy Dissipation
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Preliminary Optimization Results

Vf = 0.5

WP =4.262 J
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• Both designs experience less severe localization than FCC alone

• Problem is highly sensitive to changes in topology
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Conclusions and Future Perspectives
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Future Work

Optimization

• Better parameterization for

intermediate density values

• More appropriate objective

functions / constraints
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Model Extensions
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• Pressure dependent plasticity

models

• Full microstrain tensor

Transient Analysis

• Account for dispersive effects

■ Coupling with plasticity

Micromorphic
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