

Nonlinear Topology Optimization with Microstructural Effects:

A Micromorphic Approach

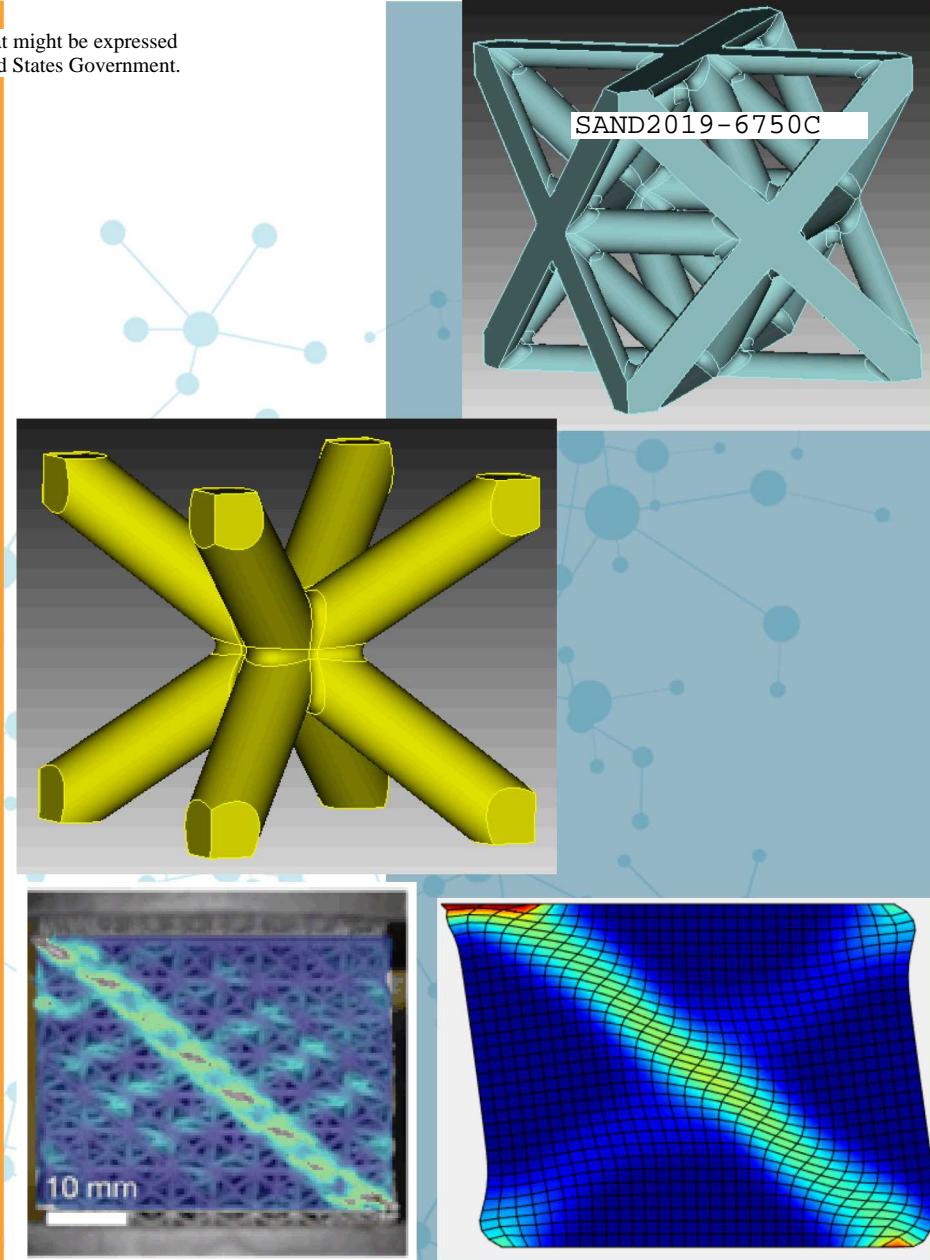
PRESENTED BY

Ryan Alberdi

Nanostructure Physics Department

Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525



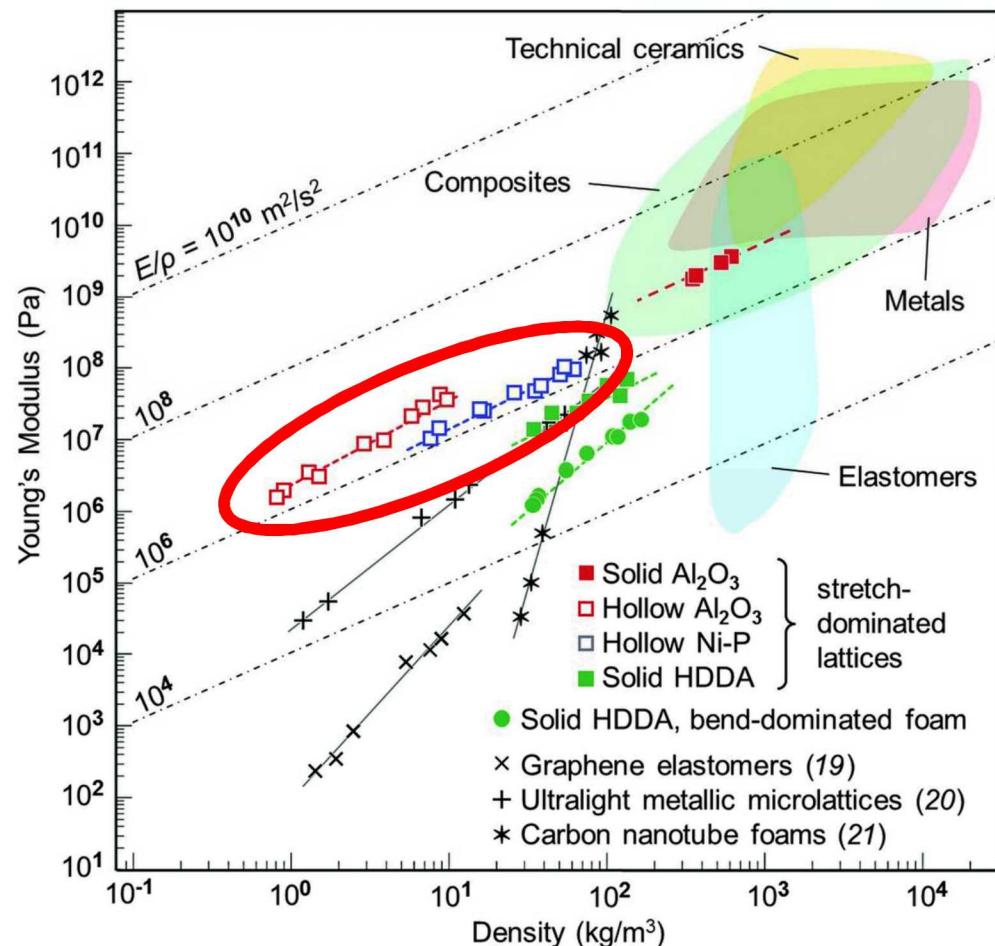
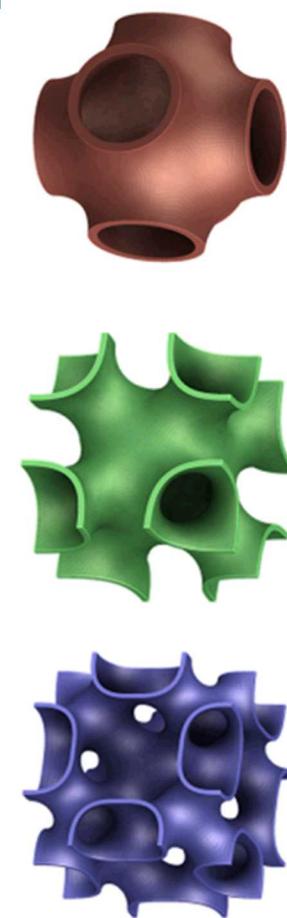
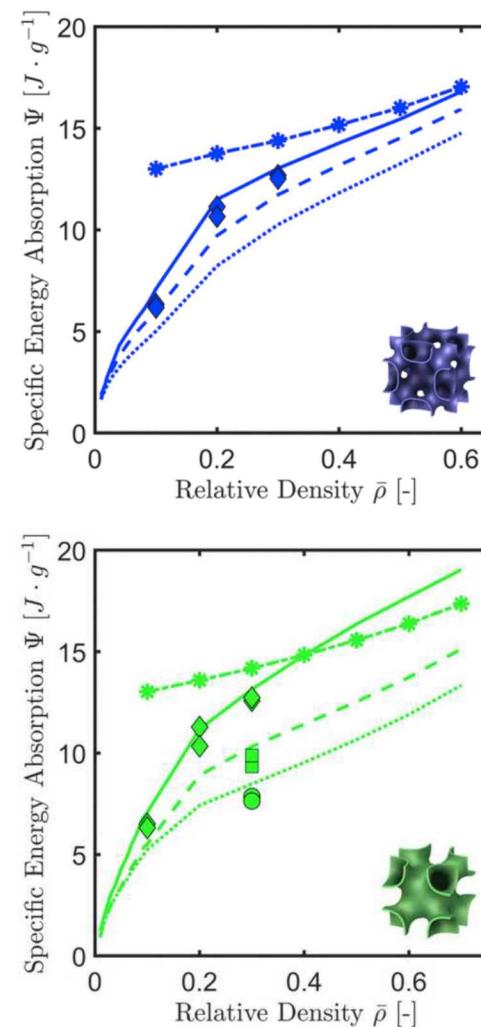
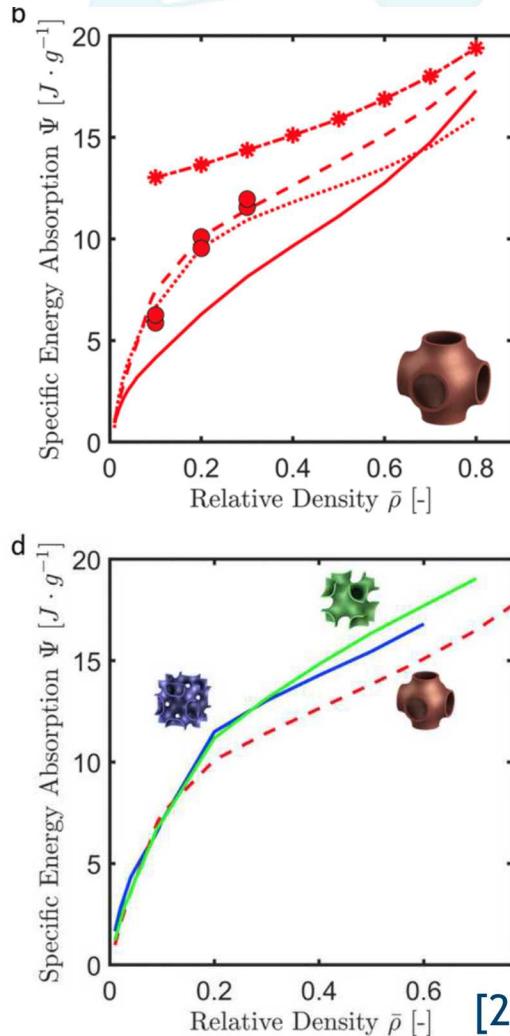
Talking Points for Today

- Lattice Metamaterials for Novel Structural Designs
- Capturing Localization Effects through a Generalized Continuum Approach
- Topology Optimization for Structural Design
- Shear Band Localization and Dual-Lattice Metamaterials

Lattice Metamaterials for Novel Structural Designs

What Are Lattice Metamaterials?

- Exceptional weight-specific stiffness/strength^[1]



- High specific energy absorption – Ultralight energy absorbers^[2]

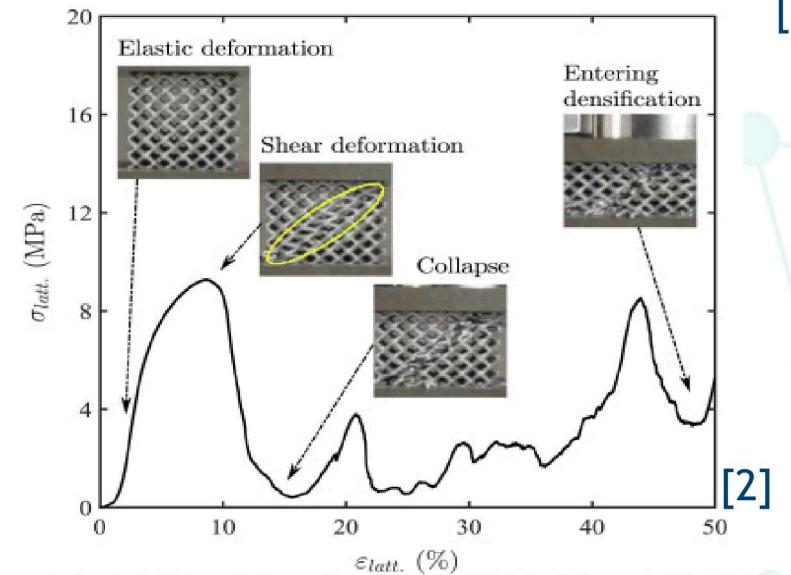
[1] Zhang, et al. *Ultralight, ultrastiff mechanical metamaterials*. *Science*, 2014. **344**: p. 1373-1377.

[2] Colin Bonatti and Mohr, D. *Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption*. *Acta Materialia*, 2019. **164**: p. 301-321.

Localization in Lattice Structures due to Fabrication Defects and Geometrical Effects



- Lattice metamaterials in compression fail predominantly through localization
- Shear bands cause sharp drop in load capacity – limiting energy dissipation
- Compression bands allow for progressive collapse of lattice
- Ideal energy dissipating behavior involves homogeneous plastic deformation before progressive collapse at a high plateau stress

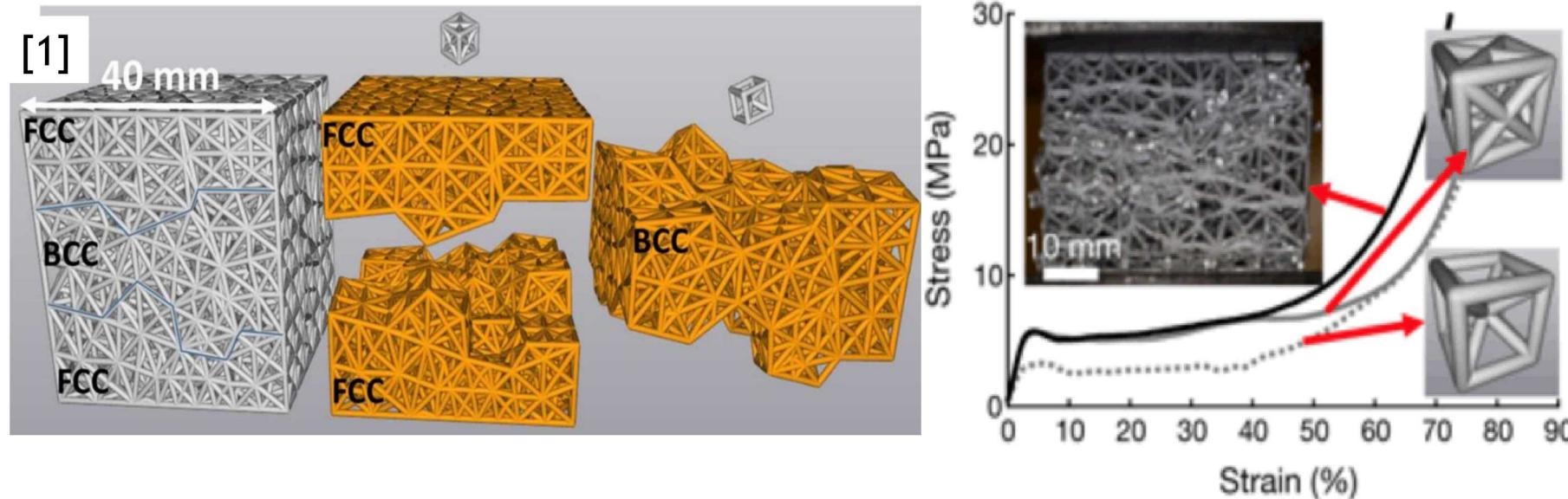


[1] Al-Ketan, et al. *Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials*. *Additive Manufacturing*, 2018. **19**: p. 167-183.

[2] Maskery, et al. *A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting*. *Materials Science and Engineering A*, 2016. **670**: p. 264-274.

Design Considerations with Lattice Metamaterials is non-intuitive

- Design approaches with traditional materials don't apply to lattice metamaterials – non-intuitive
- Combining different lattice topologies can allow for tailoring of properties and control of localization^[1]



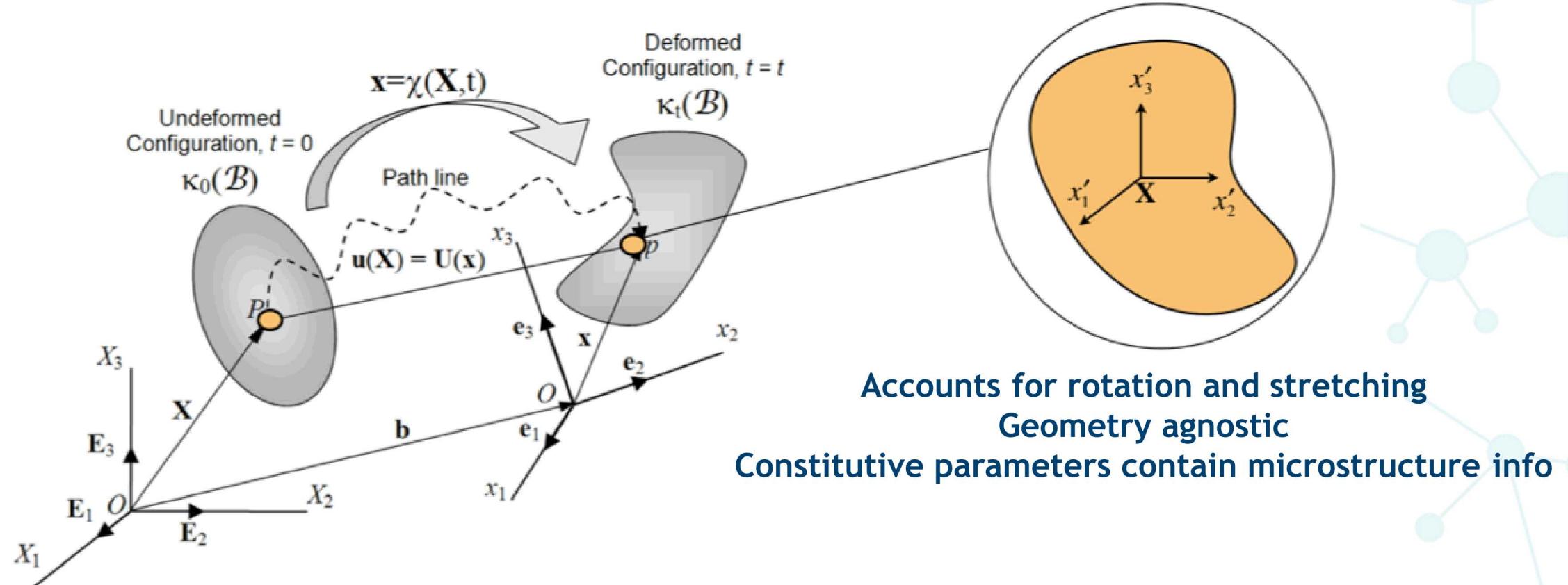
- Topology optimization provides rigorous way to explore design space
- Multiscale topology optimization approaches can account for microstructure but are based on homogenization
 - Becomes computationally **very expensive** for nonlinear problems
 - Homogeneous deformation of RVE **cannot capture** localization

Capturing Localization Effects Through a Generalized Continuum Approach

EMI 2019

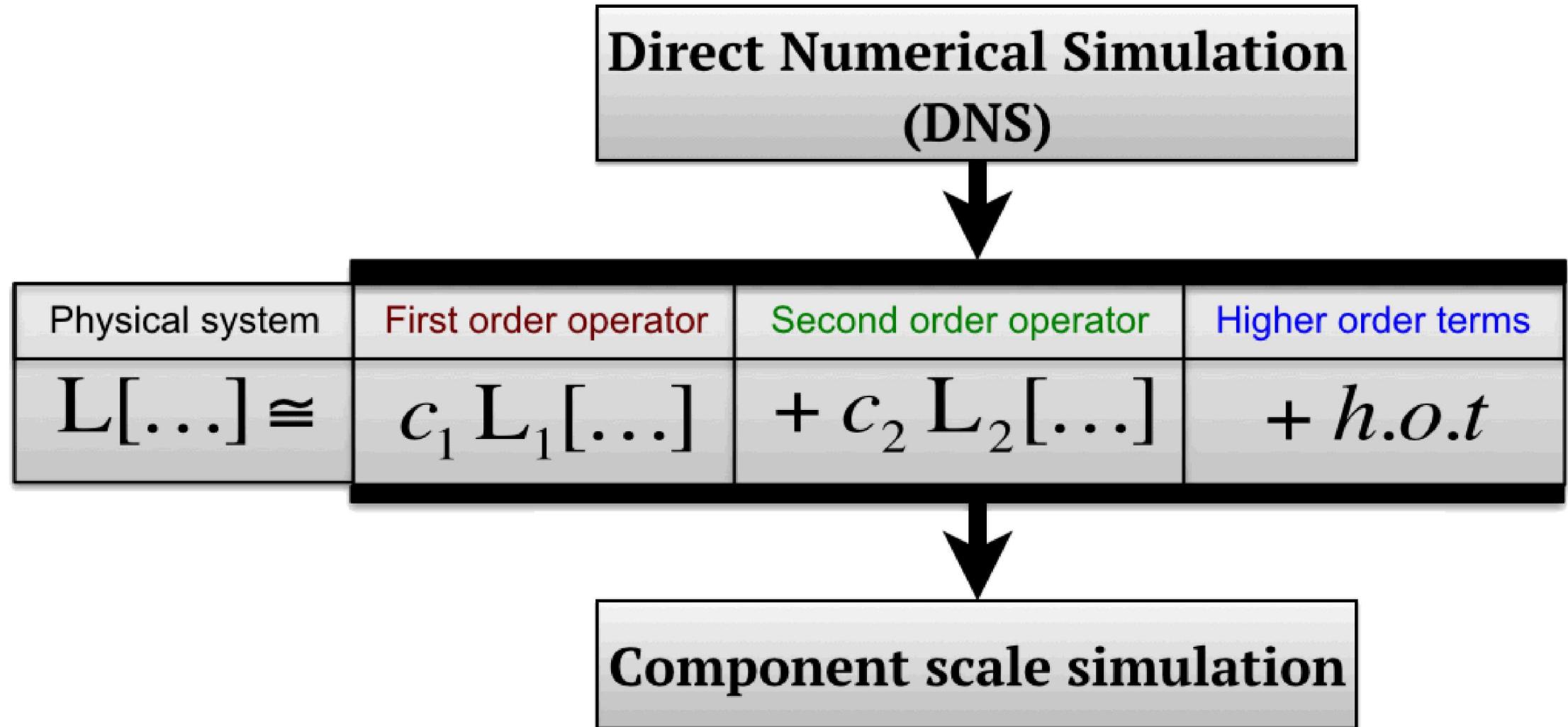
A wide-angle photograph of the Center for Integrated Nanotechnologies building at sunset. The building has a modern design with a large glass facade on the left and a more solid, textured facade on the right. The sky is filled with dramatic, illuminated clouds. The text "EMI 2019" is overlaid in the upper left corner of the image.

Accounting for Underlying “Microstructure” With Additional DOFs: Micromorphic Approach



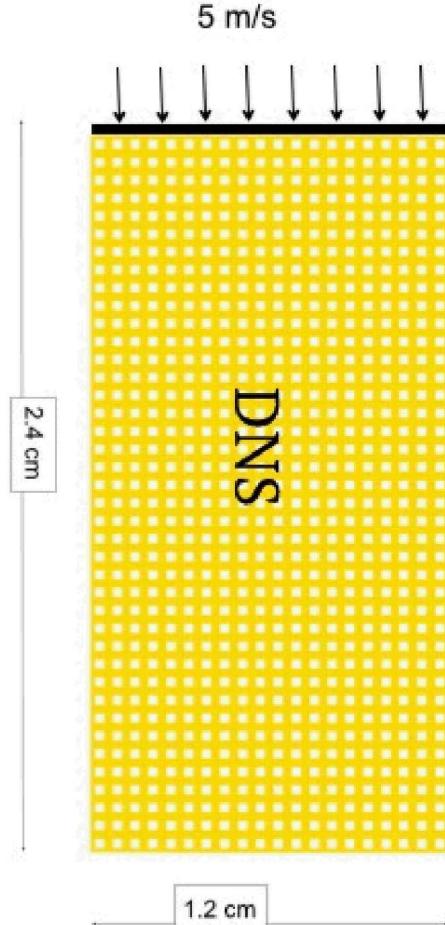
- Can capture significant gradients in macroscopic loading over microstructural features which cause
 - Size dependent mechanical properties
 - Dispersion effects in wave propagation
 - Accumulation of plastic deformation in microstructure during localization

Calibrating Micromorphic Models to Specific Microstructures



Example: Low Velocity Impact in Foam

Classical (200 x 100 elements):



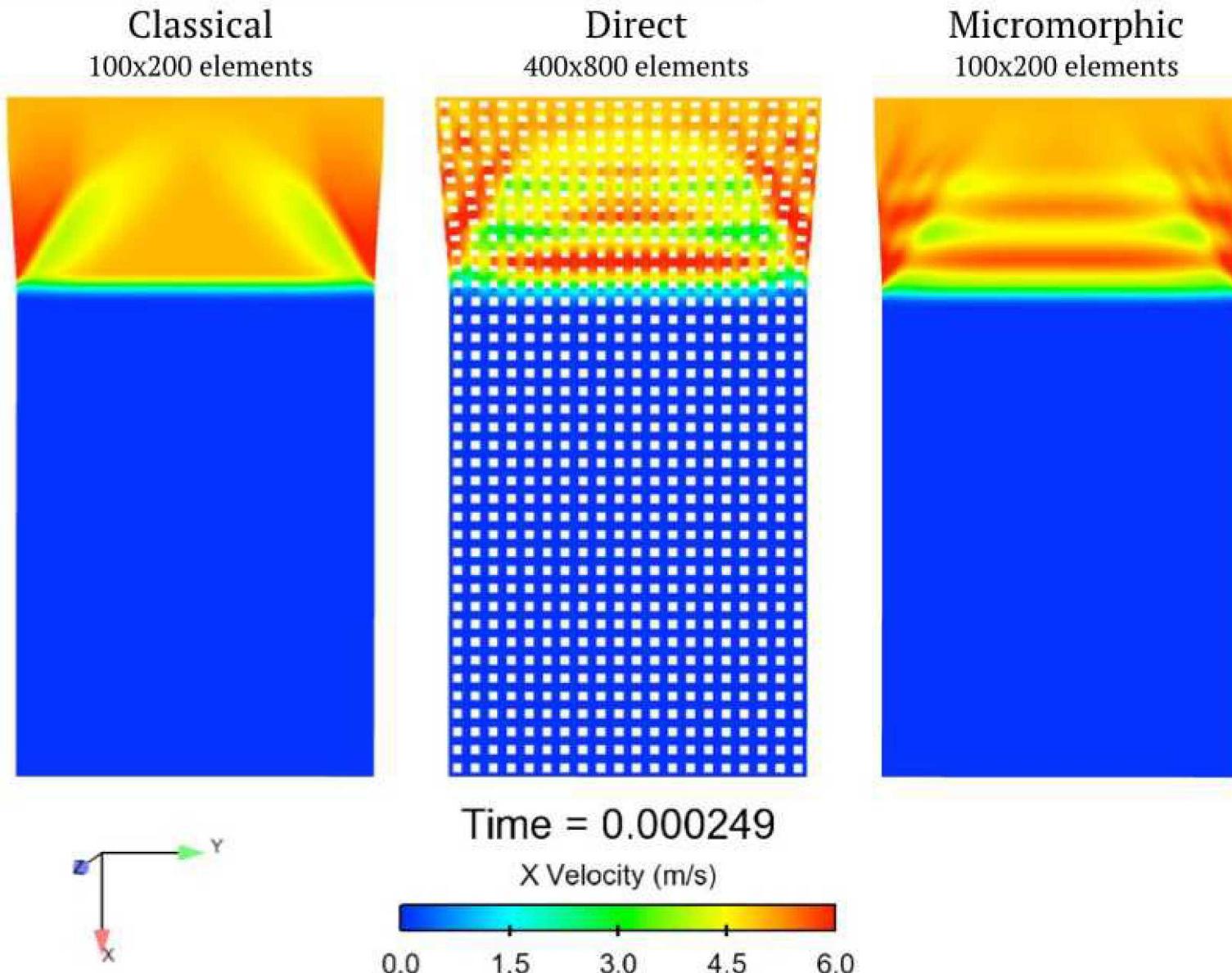
Direct (800 x 400 elements):

- 0.3 mm "pore" size (0.6 mm RVE)
- 25% porosity
- Solid density: 1100 kg/m³ (Matweb.com)
- Young's modulus: 0.851 MPa (Fan, 2011)
- Poisson's ratio: 0.4

Micromorphic (200 x 100):

- microscale length: 0.6 mm
- Mindlin parameter (a.k.a. coupling constant): 0.3

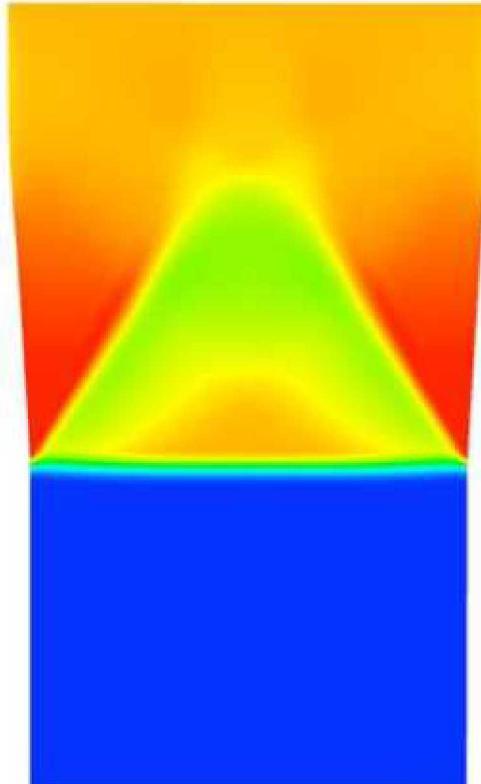
Example: Low Velocity Impact in Foam



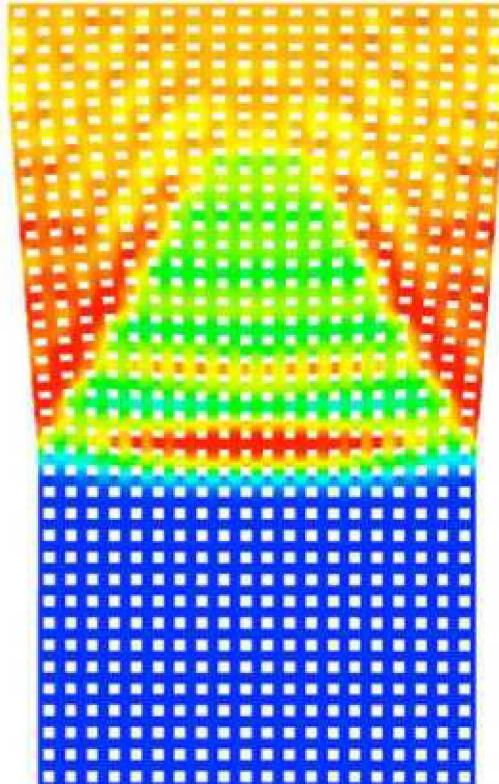
Example: Low Velocity Impact in Foam

Los Alamos
National Laboratory
EST. 1945

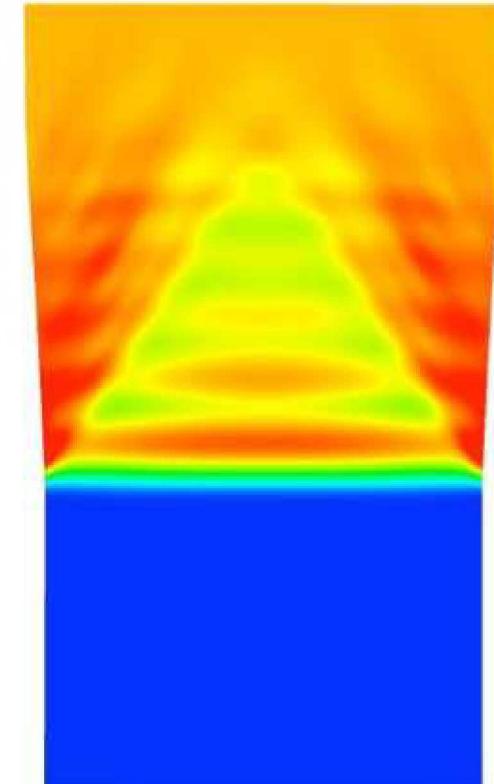
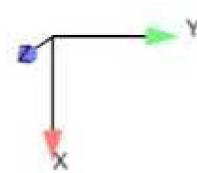
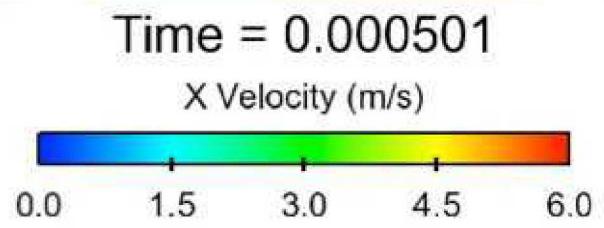
Classical
100x200 elements



Direct
400x800 elements

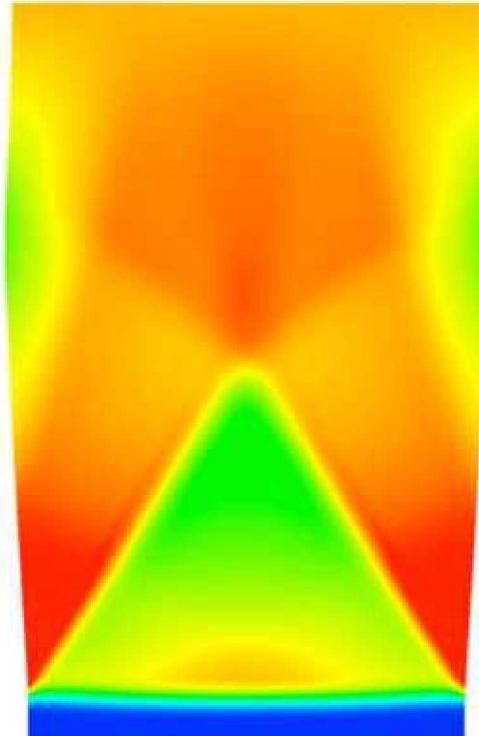


Micromorphic
100x200 elements

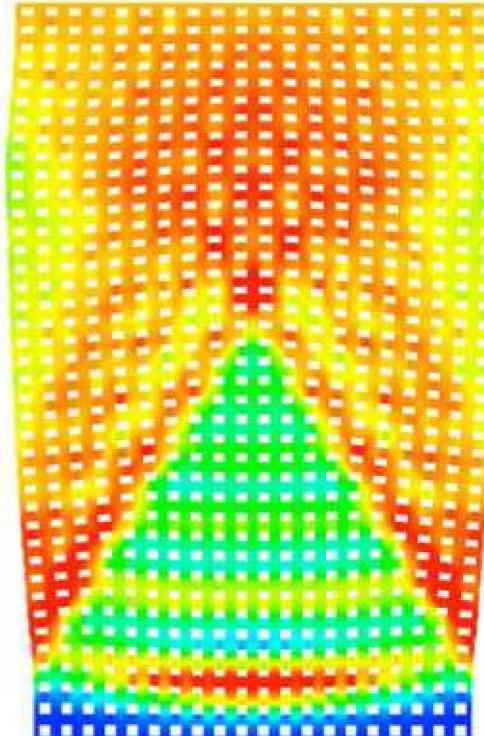


Example: Low Velocity Impact in Foam

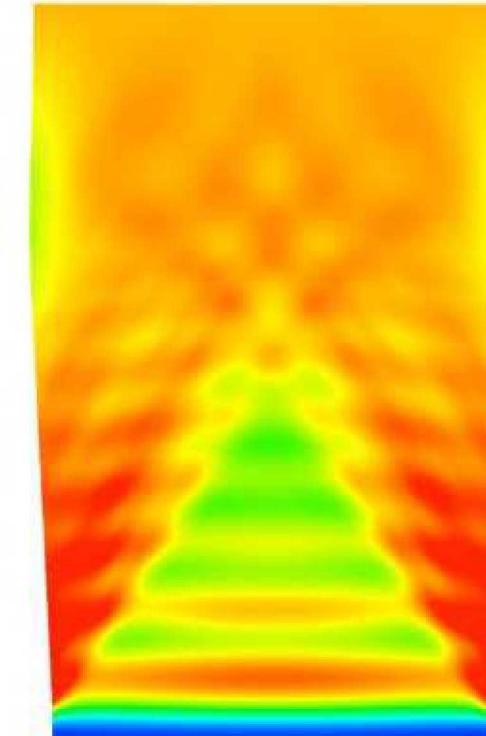
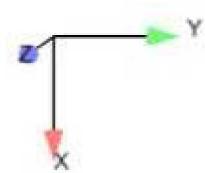
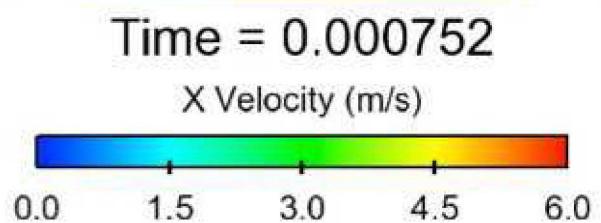
Classical
100x200 elements



Direct
400x800 elements



Micromorphic
100x200 elements



Capturing Strain Softening and Localization: Regularization Through a Micromorphic Model

- Localization phenomena can lead to a loss of ellipticity in governing PDEs for classical continua
- Micromorphic continua involve length scale which regularizes this effect – suitable for **simulating localization phenomena in lattice metamaterials**
- Regularizing effect can be gained by replacing the microstrain tensor with a scalar plastic microstrain variable – only 1 additional DOF per continuum point
- Finite deformation theory considering elastoplastic softening and scalar plastic microstrain variable^[1]:

Free Energy

$$\psi(\mathbf{C}^e, \chi, \nabla \chi) = \psi_{ref}(\mathbf{C}^e, \alpha) + \frac{1}{2}H(\alpha - \chi)^2 + \frac{1}{2}\mathbf{K} \cdot \mathbf{A} \cdot \mathbf{K}$$

$$\mathbf{K} = \nabla \chi \quad \mathbf{A} = A\mathbf{I} \quad \psi_{ref}(\mathbf{C}^e, \alpha) \longrightarrow \text{Macroscale free energy}$$

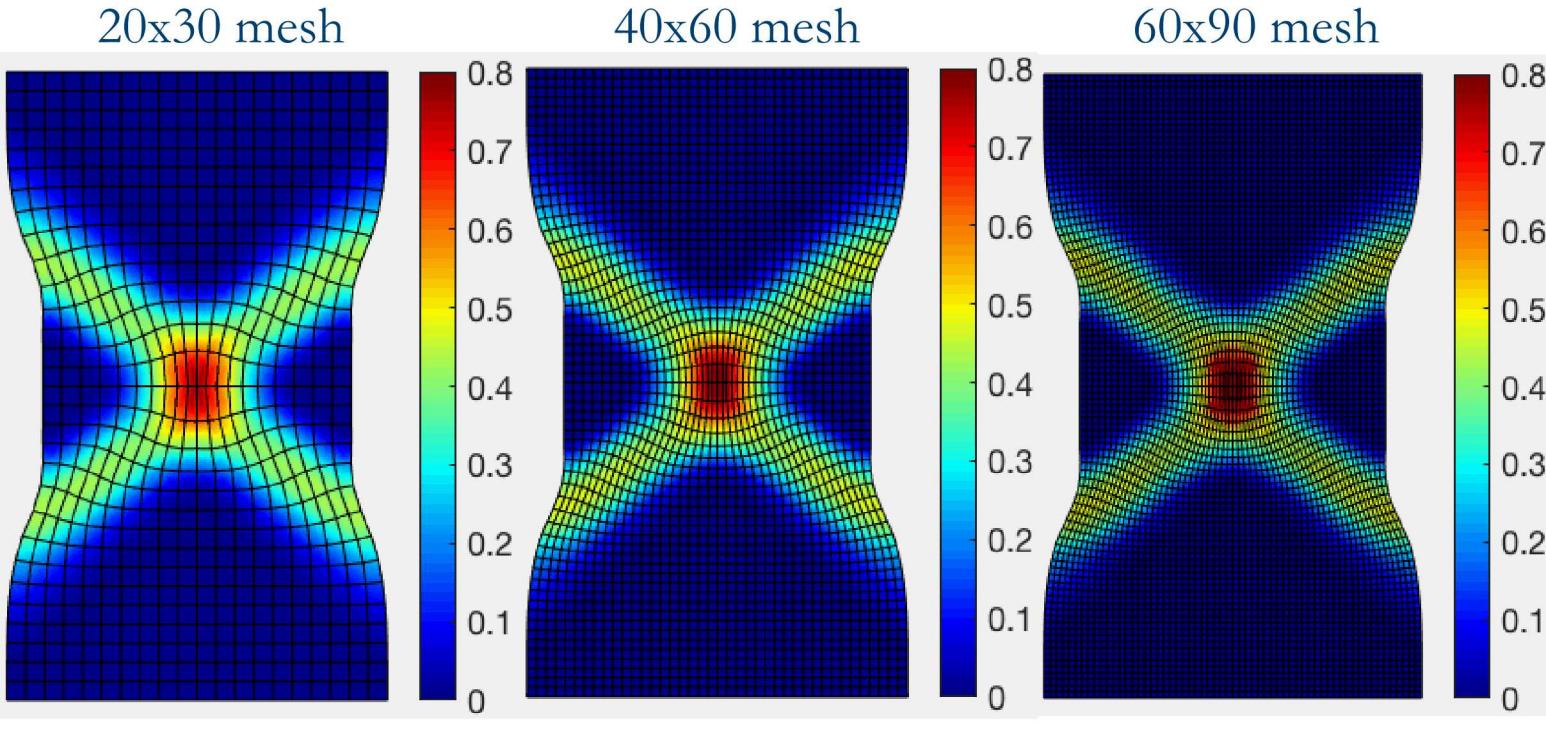
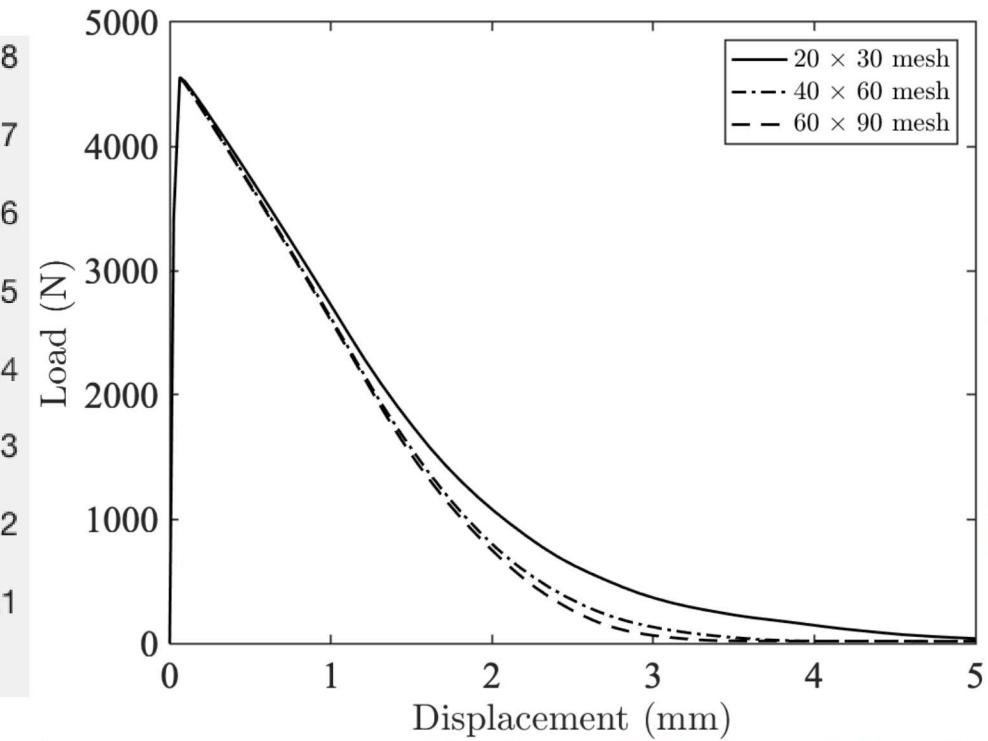
Micro Momentum Balance

$$\nabla \cdot \mathbf{b}_0 - a_0 = A\Delta\chi - H\chi + H\alpha = \alpha - \chi + l^2\Delta\chi = 0$$

$$l = \sqrt{A/H}$$

Shear Band Localization

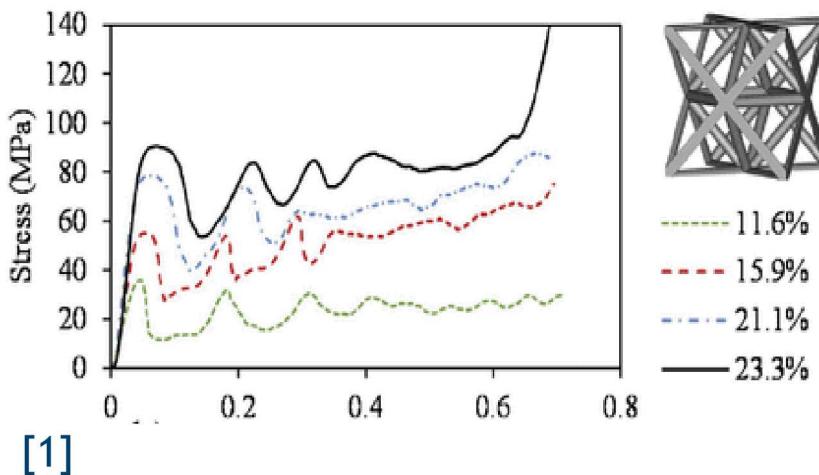
- Localization bands have finite width dictated by micromorphic parameters A, H, Z and hardening/softening modulus
- Inhomogeneous deformation induced by finite deformation kinematics (necking/bulging)



Topology Optimization for Structural Designs

EMI 2019

Combining Functionalities of FCC (Energy Dissipation) & BCC (No Softening) Lattices

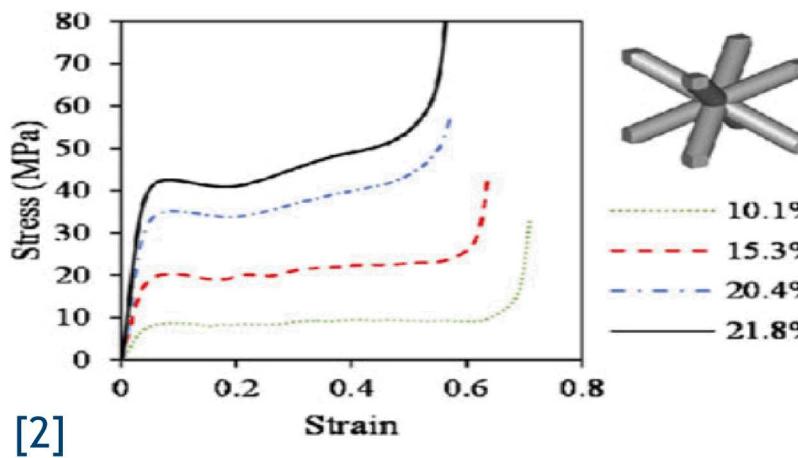


FCC Lattice

- Higher stiffness and yield stress
- Peak stress reached $\sim 5\%$ strain
- Severe softening after peak stress

$$E \rightarrow 16.55 \text{ GPa} \quad \sigma_{max} \rightarrow 37.07 \text{ MPa}$$
$$\sigma_y \rightarrow 23.17 \text{ MPa} \quad K^h \rightarrow -220 \text{ MPa}$$

[1]

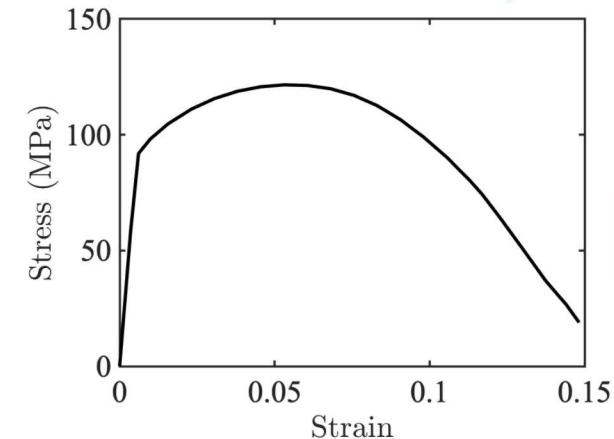
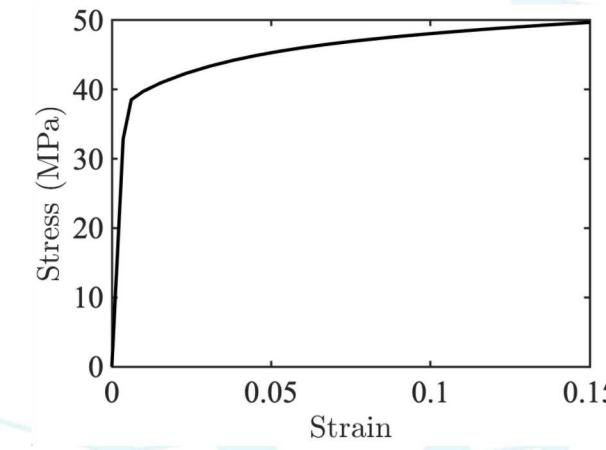


BCC Lattice

- Lower stiffness and yield stress
- Little to no softening
- Relatively level hardening until densification

$$E \rightarrow 9.31 \text{ GPa} \quad \sigma_{max} \rightarrow 11.47 \text{ MPa}$$
$$\sigma_y \rightarrow 9.57 \text{ MPa} \quad K^h \rightarrow -20 \text{ MPa}$$

[2]



The Math Slide: Formulating the Optimization Problem

Density-Based Parameterization

$$0 \leq \rho_e \leq 1$$

BCC Phase $\rho_e = 0$

FCC Phase $\rho_e = 1$

SIMP Interpolation

$$A_e = \rho_e^p A_{FCC} + (1 - \rho_e)^p A_{BCC}$$

$$A \in \{E, \sigma_y, \sigma_{max}, K^h\}$$

Design Problem

$$\min_{\mathbf{x}} f_0(\mathbf{x}) = - \int_t \int_{\Omega_0} \dot{w}^p dv dt$$

s.t. $f_1(\mathbf{x}) = 1 - \frac{1}{V} \sum_e^{n_{ele}} \rho_e(\mathbf{x}) v_e - V_f \leq 0$

$$f_2(\mathbf{x}) = \left[\sum_e^{n_{ele}} \sum_{r=1}^{n_{ipt}} \left(\alpha_{e_r}^N \right)^q \right]^{\frac{1}{q}} - \hat{\alpha} \leq 0$$

$$\mathbf{R}^k \left(\hat{\mathbf{u}}^k, \hat{\mathbf{u}}^{k-1}, \mathbf{c}^k, \mathbf{c}^{k-1}, \boldsymbol{\rho}(\mathbf{x}) \right) = \mathbf{0}, \quad k = 1, 2, \dots, N$$

$$\mathbf{H}^k \left(\hat{\mathbf{u}}^k, \hat{\mathbf{u}}^{k-1}, \mathbf{c}^k, \mathbf{c}^{k-1}, \boldsymbol{\rho}(\mathbf{x}) \right) = \mathbf{0}, \quad k = 1, 2, \dots, N$$

$$\mathbf{0} \leq \mathbf{x} \leq \mathbf{1}$$

Maximize Plastic Work

Volume Fraction Constraint (BCC Phase)

Maximum Accumulated Plastic Strain Constraint

Implicit Global Constraint

Explicit Global Constraint

Box Constraint

Adjoint Sensitivity Analysis: Defining Local and Global Variables and Associated Constraints

Global Variables and Constraints

Scalar plastic microstrain, F-bar elements for incompressibility

$$\hat{\mathbf{u}}^k = \begin{bmatrix} \mathbf{u}^k \\ \chi^k \end{bmatrix} \quad \mathbf{R}^k = \begin{bmatrix} \mathbf{R}_1^k \\ \mathbf{R}_2^k \end{bmatrix} = \begin{bmatrix} {}_{e=1}^{n_{ele}} \mathbf{F}_{int}^{e,u^k} \\ {}_{e=1}^{n_{ele}} \mathbf{F}_{int}^{e,\chi^k} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

$$\mathbf{F}_{int}^{e,u^k} = \sum_{r=1}^{n_{ipt}} w_r \mathbf{B}_{er}^{u^k T} r_{er}^{k-a} \bar{\mathbf{P}}_{er}^k \quad \mathbf{F}_{int}^{e,\chi^k} = \sum_{r=1}^{n_{ipt}} w_r \left(\mathbf{N}_{er}^{\chi^k T} \mathbf{N}_{er}^{\chi^k} \chi_e^k - \mathbf{N}_{er}^{\chi^k T} \alpha_{er}^k + \frac{A}{H} \mathbf{B}_{er}^{\chi^k T} \mathbf{B}_{er}^{\chi^k} \chi_e^k \right)$$

Local Variables and Constraints

Finite deformation isotropic elasto-viscoplasticity with micromorphic regularization

$$\mathbf{c}^k = [\mathbf{c}_1^k \quad \dots \quad \mathbf{c}_{n_{ele}}^k]^T$$

$$\mathbf{c}_e^k = [\mathbf{c}_{e_1}^k \quad \dots \quad \mathbf{c}_{e_{n_{ipt}}}^k]^T$$

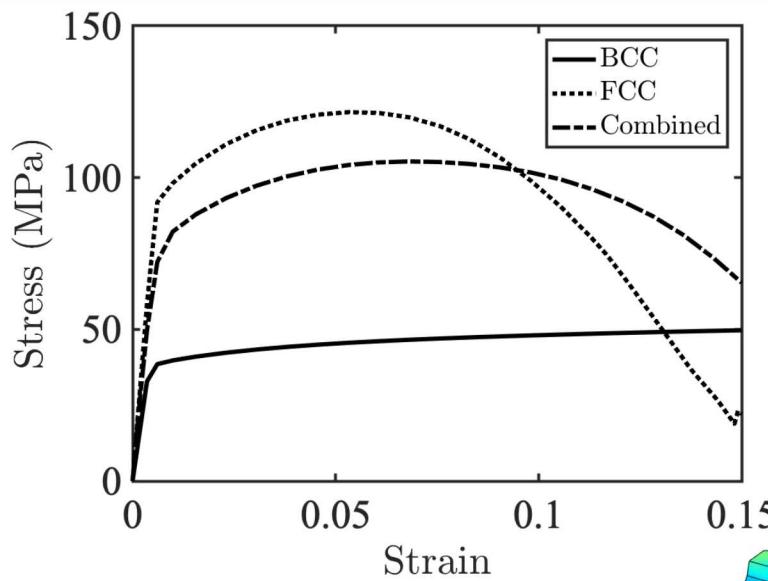
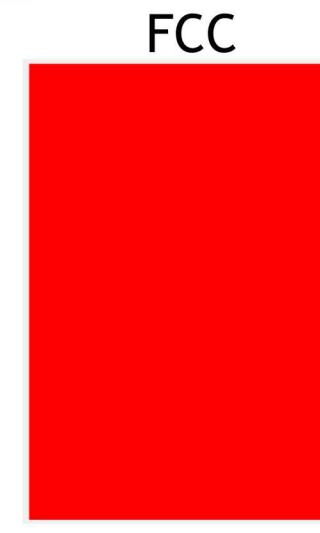
$$\mathbf{c}_{er}^k = [\mathbf{b}_{er}^{e^k} \quad \alpha_{er}^k \quad \Delta\gamma_{er}^k]^T$$

$$\mathbf{H}_{er}^k = \begin{cases} \mathbf{h}_{er_1}^k = \mathbf{b}_{er}^{e^k} - \mathbf{b}_{er}^{e,tr} \cdot \exp[-2\Delta t \mathbf{A}_{er}^k] = \mathbf{0} \\ h_{er_2}^k = \alpha_{er}^k - \alpha_{er}^{k-1} - \Delta\gamma_{er}^k \\ h_{er_3}^k = \sqrt{\frac{3}{2} \|\mathbf{s}_{er}^k\|} \left(\frac{\Delta t}{\mu \Delta\gamma_{er}^k + \Delta t} \right)^\vartheta - \zeta(\alpha_{er}^k, \chi_e^k) \end{cases}$$

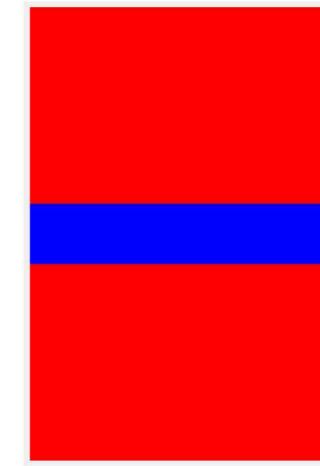
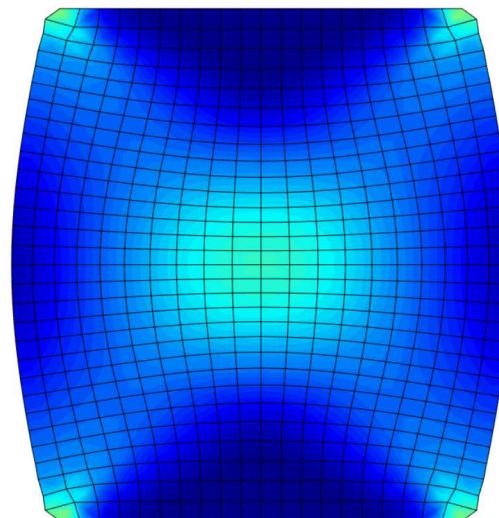
Examples for Shear Band Localization and Dual Lattice Optimization

EMI 2019

Naïve Combination of Lattices Leads to Improvement in Energy Dissipation

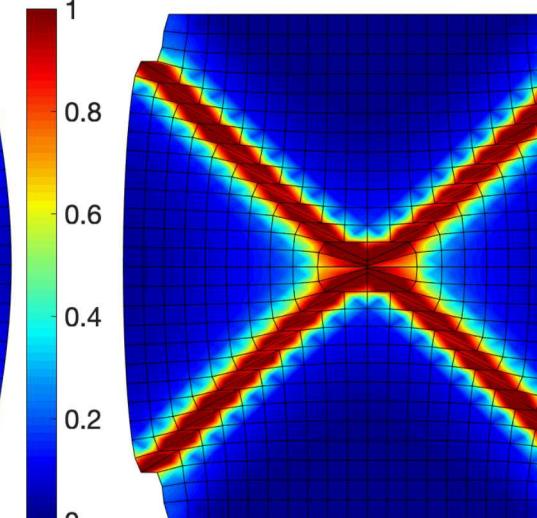


Combined (13% BCC)

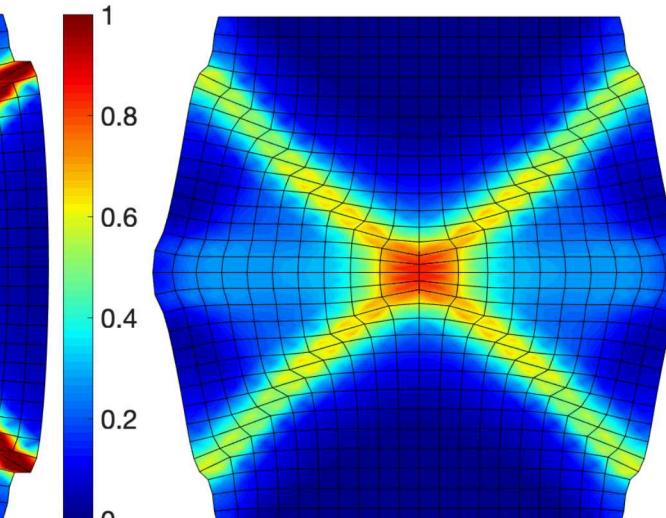


Dissipated energy:

1.043 J



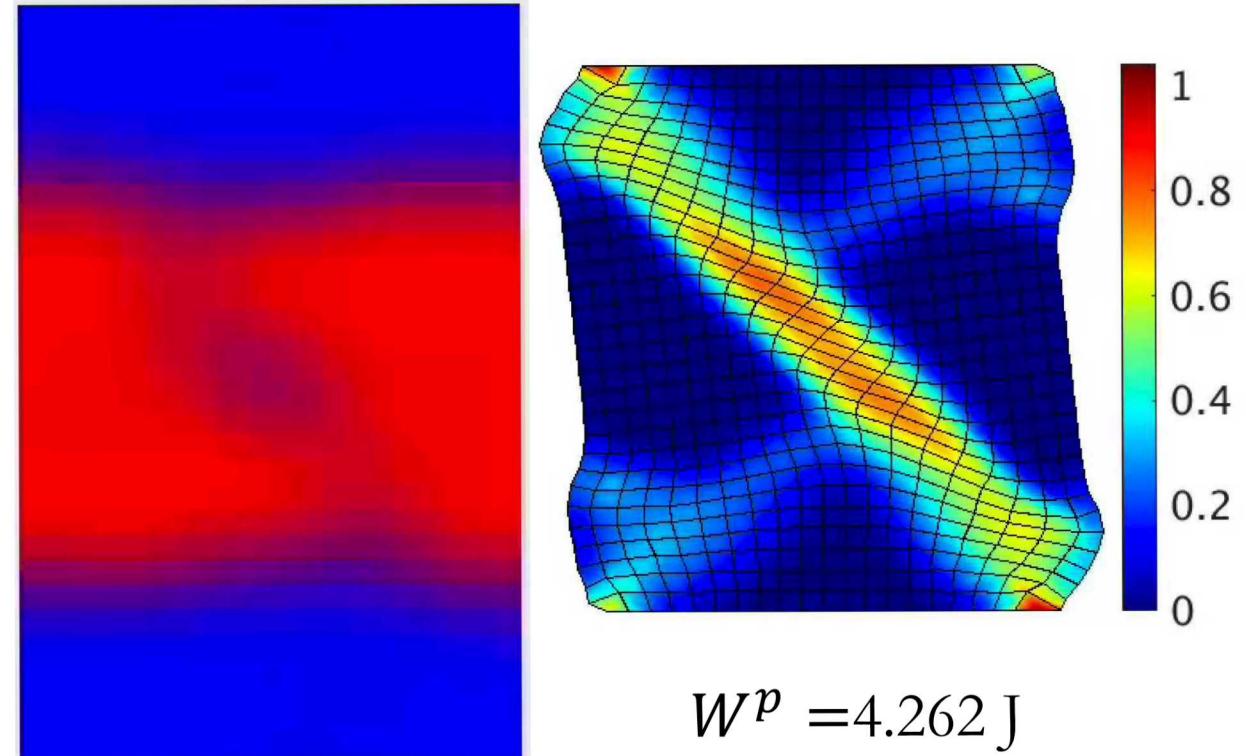
8.109 J



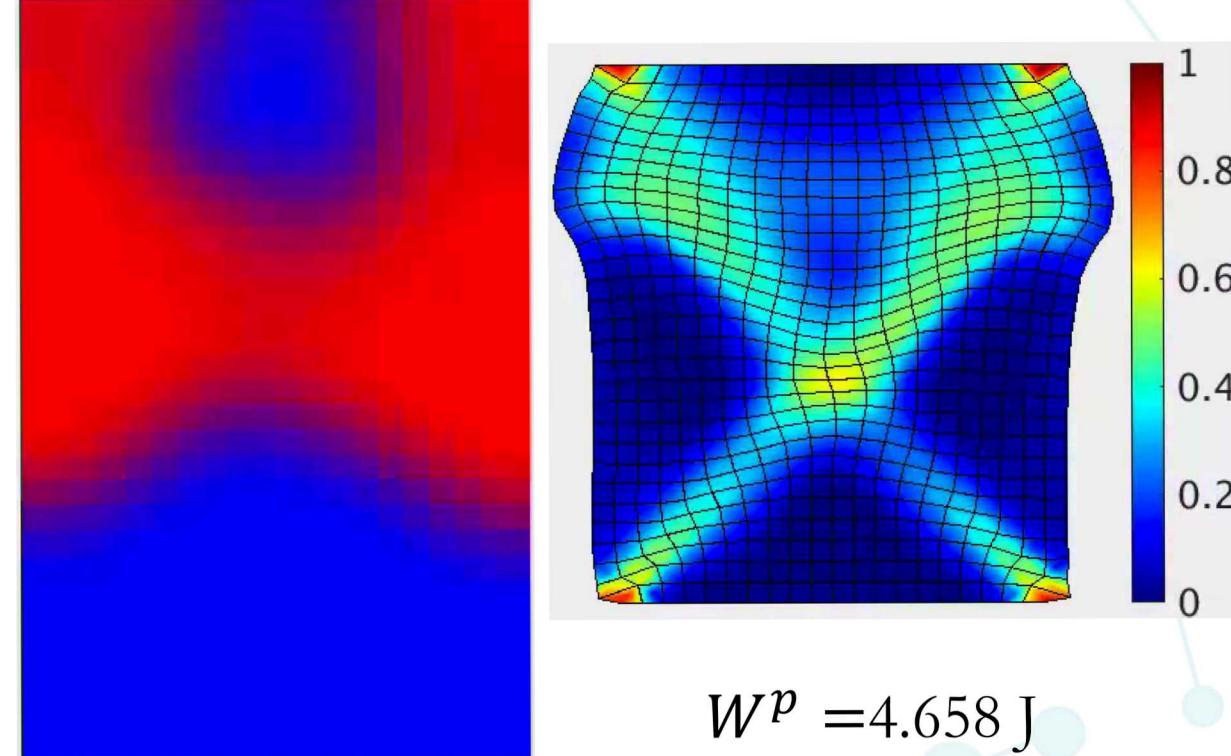
8.218 J

Preliminary Optimization Results

$$\underline{V_f} = 0.5$$



$$\underline{V_f} = 0.9$$



- Both designs experience less severe localization than FCC alone
- Problem is highly sensitive to changes in topology

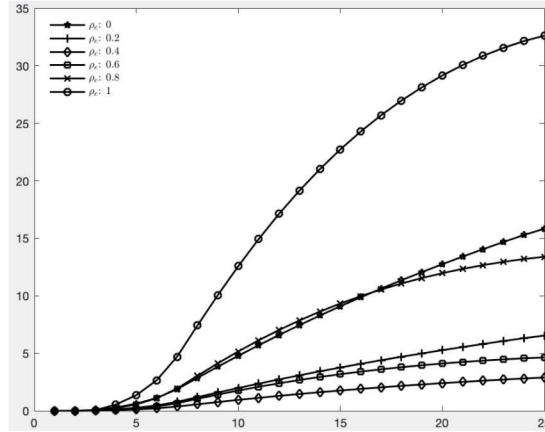
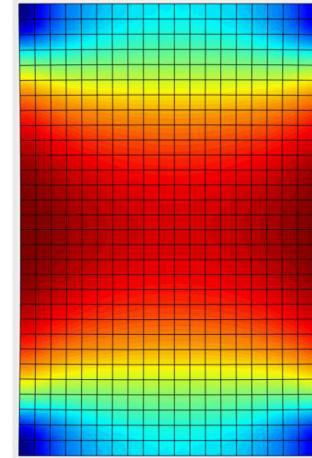
Conclusions and Future Perspectives

EMI 2019

Future Work

Optimization

- Better parameterization for intermediate density values
- More appropriate objective functions/constraints

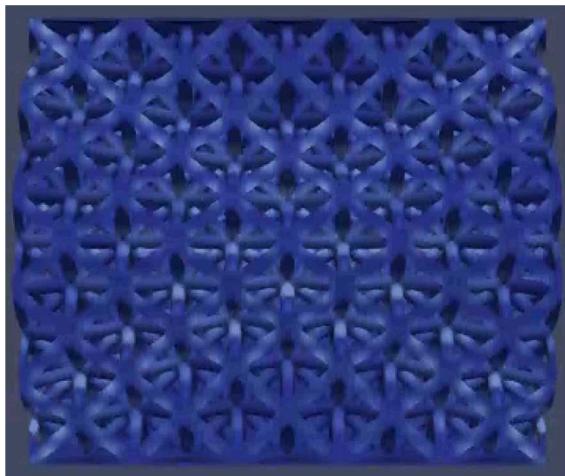
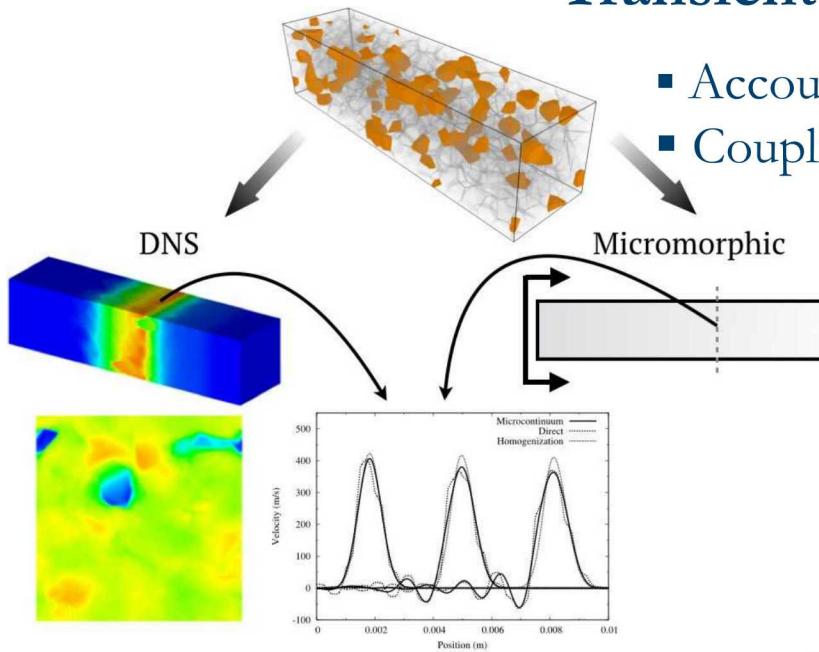


Model Extensions

- Pressure dependent plasticity models
- Full microstrain tensor

Calibration through DNS

$$f(\phi) = F(\hat{\mathbf{u}}^1(\phi), \dots, \hat{\mathbf{u}}^n(\phi)) = \sum_{k=1}^n \sum_{i=1}^{n_n} \|\bar{\mathbf{d}}_i^k - \mathbf{d}_i^k\|^2$$



Transient Analysis

- Account for dispersive effects
- Coupling with plasticity