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Talking Points for Today

» Lattice Metamaterials for Novel Structural Designs

» Capturing Localization Effects through a Generalized
Continuum Approach

» Topology Optimization for Structural Design

» Shear Band Localization and Dual-TLattice Metamaterials
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What Are Lattice Metamaterials?
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[1] Zhang, et al. Ultralight, ultrastiff mechanical metamaterials. Science, 2014. 344: p. 1373-1377.

[2] Colin Bonatti and Mohr, D. Swooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption. Acta Materialia, 2019. 164: p. 301-321. 4



Localization in Lattice Structures due to
Fabrication Defects and Geometrical Effects
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" Shear bands cause sharp drop in load capacity — limiting energy dissipation 2} |
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» Compression bands allow for progressive collapse of lattice
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[1] Al-Ketan, et al. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 2018. 19: p. 167-183.
[2] Maskery, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering A, 2016. 670: p. 264-274. 5




Design Considerations with Lattice
Metamaterials is non-intuitive

" Design approaches with traditional materials don’t apply to lattice metamaterials — non-intuitive

" Combining different lattice topologies can allow for tailoring of properties and control of localizationl!]
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» Topology optimization provides rigorous way to explore design space

" Multiscale topology optimization approaches can account for microstructure but are based on homogenization
" Becomes computationally very expensive for nonlinear problems

" Homogeneous deformation of RVE cannot capture localization

[1] Pham, et al. Damage-tolerant architected materials inspired by crystal microstructure. Nature, 2019. 565: p. 305-311.



Capturing Localization Effects Through a
Generalized Continuum Approach



Accounting for Underlying “Microstructure”
With Additional DOFs: Micromorphic Approac
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" Can capture significant gradients in macroscopic loading over microstructural features which cause
» Size dependent mechanical properties

= Dispersion effects in wave propagation

" Accumulation of plastic deformation in microstructure during localization

[1] Eringen, A. Cemal. Mechanics of micromorphic continua. Springer, Berlin, Heidelberg, 1968.



Calibrating Micromorphic Models to Specific
Microstructures

Direct Numerical Simulation
(DNS)
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Example: Low Velocity Impact in Foam
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Example: Low Velocity Impact in Foam

Classical Direct Micromorphic
100x200 elements 400x800 elements 100x200 elements
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Example: Low Velocity Impact in Foam

Classical Direct Micromorphic
100x200 elements 400x800 elements 100x200 elements
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Example: Low Velocity Impact in Foam

Classical Direct Micromorphic
100x200 elements 400x800 elements 100x200 elements
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Capturing Strain Softening and Localization:
Regularization Through a Micromorphic Model

" [ocalization phenomena can lead to a loss of ellipticity in governing PDEs for classical continua

" Micromorphic continua involve length scale which regularizes this effect — suitable for simulating localization phenomena
in lattice metamaterials

" Regularizing effect can be gained by replacing the microstrain tensor with a scalar plastic microstrain variable — only 1
additional DOF per continuum point

* Finite deformation theory considering elastoplastic softening and scalar plastic microstrain variablel!:

Free Energy

j 1 1
Y(C X, VX) = e (C°, ) + EH((X —x)° + §K.A.K

K=Vy A=AI Wre f(C €, ) == Macroscale free energy

Micro Momentum Balance

Vby—ay=AAy - Hy+Ha=a—xy+1I*Axy =0
| = JA/H

[1] Anand, et al. A Jarge-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands. International Journal of Plasticity, 2012. 30-31: p. 116-14%




Shear Band Localization

* Localization bands have finite width dictated by micromorphic parameters A,H,Z and hardening/softening
modulus

* Inhomogeneous deformation induced by finite deformation kinematics (necking/bulging)
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Combining Functionalities of FCC (Energy
Dissipation) & BCC (No Softening) Lattices

FCC Lattice
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[1] Al-Ketan, et al. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 2018. 19: p. 167-183. 47
21 Al-Ketan. et al. The effect of architecture on the mechanical broperties of cellular structures based on the IW'P minimal surface. lournal of Materials Research. 2018. 33: n. 343-359.



The Math Slide:
Formulating the Optimization Problem

Density-Based Parameterization SIMP Interpolation
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Adjoint Sensitivity Analysis: Defining Local and
Global Variables and Associated Constraints

Global Variables and Constraints

Scalar plastic microstrain, F-bar elements for incompressibility
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Local Variables and Constraints
Finite deformation isotropic elasto-viscoplasticity with micromorphic regularization
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[1] Alberdi, R., et al., A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization. International Journal for Numerical Methods in Engineering, 2018. 115: p. 1-56.
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Examples for Shear Band Localization and
Dual Lattice Optimization



Naive Combination of Lattices Leads to
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tion Results
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* Both designs experience less severe localization than FCC alone
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* Problem is highly sensitive to changes in topology






Future Work

: Model Extensions

Optimization

= Better parameterization for - = Pressure dependent plasticity

models
= Full microstrain tensor

intermediate density values
" More appropriate objective
functions/constraints

Calibration through DNS : :

| y ) g e g Transient Analysis

f(@) = F(a' (), ..., a" ZZHd —df| C
’ k=1 i=1 = Account for dispersive effects

= Coupling with plasticity
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