
sCO₂ Power Cycle Component Cost Correlations from DOE Data Spanning Multiple Scales and Applications

Nathan T. Weiland (NETL), Blake W. Lance (Sandia), and Sandeep R. Pidaparti (NETL)

ASME Turbo Expo, June 17-21, 2019, Phoenix, Arizona, USA

**NATIONAL
ENERGY
TECHNOLOGY
LABORATORY**

**Sandia
National
Laboratories**

Introduction

- **Motivation**
 - Most sCO₂ systems analysis studies to date focus on efficiency-based optimization
 - Commercialization is driven by economics, so plant capital cost must be considered
 - Little component cost data is available to date for this relatively new field
- **Background**
 - Present study is inspired by the work of Carlson et al. (2017 Turbo Expo), which developed cost algorithms for 1-100 MW_e CSP sCO₂ plants
 - Present study expands upon this work by leveraging the collective resources of the U. S. Department of Energy (DOE) National Laboratories, with sCO₂ component vendor costs spanning multiple applications (nuclear, fossil, solar) and size ranges (5-750 MW_e)
- **Resulting cost correlations are reasonably accurate and comprehensive, and should enable a shift from efficiency-based to cost of electricity-based sCO₂ plant optimization, accelerating commercialization of sCO₂ cycles**
- **Developed cost algorithms include cost scaling factors for high temperature, and have been validated and refined through industry feedback**

Development of Cost Algorithms

Source of Vendor Quotes

- **Vendor quotes were collected for sCO₂-specific components from a wide range of DOE sources:**
 - Internal quotes from NETL, SNL, and NREL
 - Results from DOE-funded sCO₂ plant design studies
 - All quotes are for indirect sCO₂ primary cycle applications
- **Vendor confidentiality is maintained when exchanging quotes across each DOE laboratory, and in reporting results – no vendor data points are shared**
 - Only information needed for correlation development was shared (e.g., cost breakdown, temperature, pressures, pressure drop)
- **Total 129 vendor quotes were gathered from DOE-wide collaboration**
 - Of these, some vendor quotes (36) were not included in curve fitting due to lack of needed information or very high/low costs relative to similar quotes
- **Non-recurring engineering and component installation costs have been separated to arrive at equipment-only costs**
 - All equipment costs are baselined to 2017 U.S. dollars using CEPCI index¹

¹ S. Jenkins, "CEPCI Updates: January 2018 (Prelim.) and December 2017 (Final)," Chemical Engineering, 19 March 2018. [Online]. Available: <https://www.chemengonline.com/cepci-updates-january-2018-prelim-and-december-2017-final/?printmode=1>. [Accessed 10 September 2018]..

Description of Cost Algorithms

General Cost Correlation Form

- **Power law form is used for developing new cost algorithms**
 - Appropriate scaling parameter (SP) is selected for different components
- **Temperature correction factor (f_T) is included for certain components to account for increase in cost with temperature**
 - Temperature break point (T_{bp}) is set to 550 °C
- **Other correction factors to account for influence of operating pressures, pressure drops on the component costs are not included in the current study, but may be considered in future studies**

$$C = a SP^b \times f_T$$

$$f_T = \begin{cases} 1 & \text{if } T_{max} < T_{bp} \\ 1 + c(T_{max} - T_{bp}) + d(T_{max} - T_{bp})^2 & \text{if } T_{max} \geq T_{bp} \end{cases}$$

Description of Cost Algorithms

Methodology – Confidence Rating

- Confidence Rating (CR) is assigned to each vendor quote to properly account for quality of the quote**

- Similar to AACE International cost estimate classification²
- CR value of 5 roughly corresponds to as-purchased or off-the-shelf prices
- Vendor quotes with CR value of 1 are not $s\text{CO}_2$ specific, and not used for this study

- Quote Confidence Ratings are used in the curve-fitting procedure and uncertainty quantification**

- Lends statistical confidence to curve fits in which no vendor data points are shown

Confidence Rating (CR)	1	2	3	4	5
AACE Class	5	4	3	2	1
Uncertainty – Low (U_{CR})	-50%	-30%	-20%	-15%	-10%
Uncertainty – High (U_{CR})	+100%	+50%	+30%	+20%	+15%
Quote Includes:					
$s\text{CO}_2$ -specific	N	Y	Y	Y	Y
Performance estimates	N	M	Y	Y	Y
Cost itemization	N	N	M	Y	Y
Materials of construction	N	N	M	Y	Y
Size and weight	N	N	M	M	Y
Drawings	N	N	N	M	Y
Installation costs	N	N	N	M	Y

Y = Yes; M = Maybe; N = No

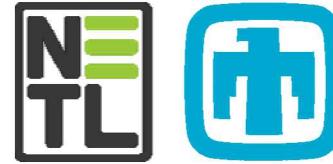
Description of New Cost Algorithms

Methodology – Confidence-Weighted Correlations

- **Curve fitting procedure minimizes CR-weighted average absolute error between the actual quotes and the cost algorithms**
 - This procedure skews the correlation towards quotes with higher quality and confidence ratings
- **Uncertainty associated with the cost algorithm has two independent sources of error**
 - Uncertainty associated with vendor quote – Taken into account via confidence rating (U_{CR})
 - Cost algorithm weighted correlation error (how well the model fits the vendor data)

$$Error = \frac{\sum \left| \frac{Cost_{actual,i} - Cost_{model,i}}{Cost_{actual,i}} \right| CR_i}{\sum CR_i}$$

$$Uncertainty (U) = \sqrt{U_{CR}^2 + Error^2}$$


Components with New Cost Algorithms

Component	Number of Quotes	Ave. Confidence Rating
Coal-fired heaters	4	4.0
Natural gas-fired heaters	10	3.0
Recuperators	24	3.1
Direct air coolers	11	4.0
IG centrifugal compressors	15	2.7
Barrel type compressors	4	2.0
Axial turbines	6	3.7
Radial turbines	4	4.0
Motors	model	4.0
Generators	8	4.0
Gearboxes	7	4.1

Primary Heater Cost Algorithms

Inverted Tower Pulverized Coal Heaters and Natural Gas Fired Heaters

• Inverted tower pulverized coal heaters:

- Thermal duty, Q selected as the scaling parameter
- Better accuracy if overall conductance, UA selected as the scaling parameter
- Includes: burners, fans, air preheaters, ductwork, headers, and interconnecting piping
- Valid for: $T_{max} \leq 730 \text{ }^{\circ}\text{C}$ and $26 \leq P \leq 31 \text{ MPa}$

• Natural gas-fired heaters:


- Thermal duty, Q selected as the scaling parameter
- Includes: burners, emission controls, and air preheaters
- Valid for: $T_{max} \leq 715 \text{ }^{\circ}\text{C}$ and $23 \leq P \leq 27.5 \text{ MPa}$

$$C = a SP^b \times f_T$$

$$f_T = \begin{cases} 1 & \text{if } T_{max} < 550 \text{ }^{\circ}\text{C} \\ 1 + d(T_{max} - 550)^2 & \text{if } T_{max} \geq 550 \text{ }^{\circ}\text{C} \end{cases}$$

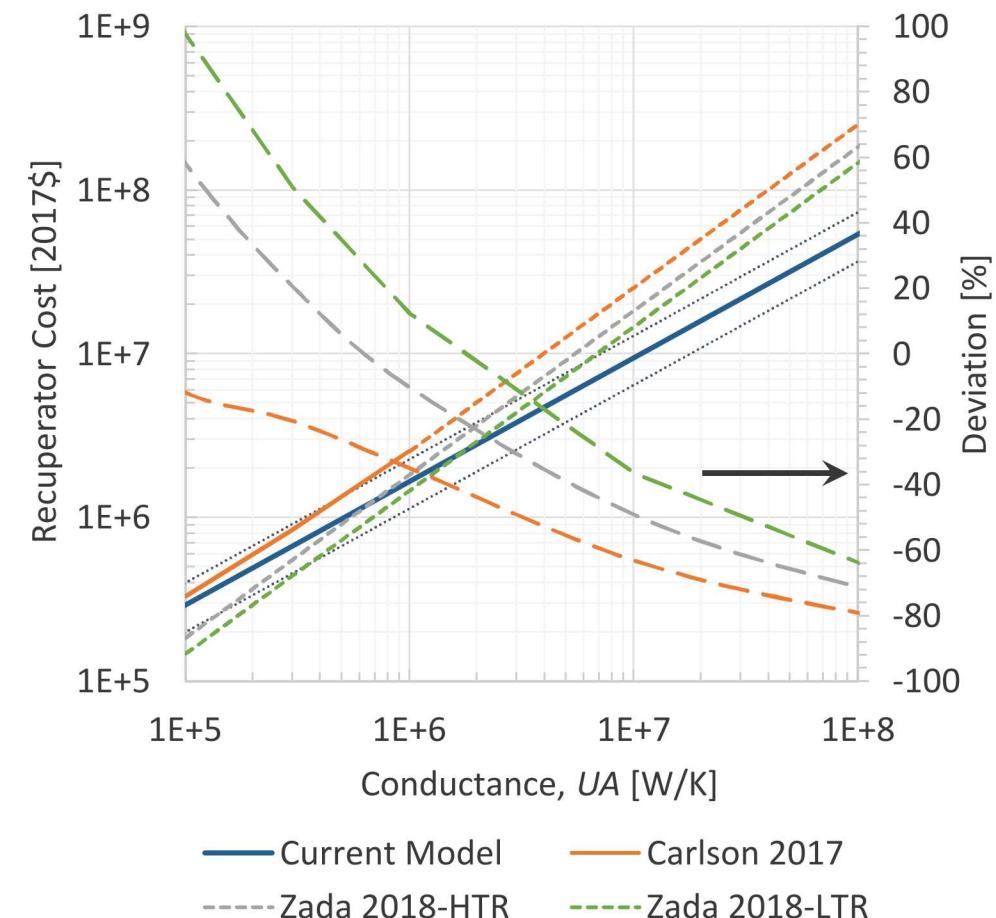
Component	Coal-fired heaters		Natural gas-fired heaters
Number of Quotes	4		10
Ave. Confidence Rating	4.0		3.0
Scaling Parameter, SP	Heat Duty	UA	Heat Duty
Units	MW_{th}	W/K	MW_{th}
SP Coefficient: a	820,800	1,248	632,900
SP Exponent: b	0.7327	0.8071	0.6
T^2 Coefficient: d	5.40E-5	5.30E-6	5.40E-5
Range: Low	187	7.40E+5	10
Range: High	1,450	5.90E+6	50
Uncertainty: Low	-23%	-16%	-25%
Uncertainty: High	26%	21%	33%
Installation Cost: Materials	0%		8%
Installation Cost: Labor	50%		12%

Recuperator Cost Algorithm

- **Cost algorithm based on 24 vendor quotes for HTRs and LTRs**
 - Includes PCHE, microtube, and plate-fin heat exchanger types (majority of the quotes are PCHE type)
- **Overall conductance, UA selected as the scaling parameter for curve fitting**
 - $UA = Q/\Delta T_{lm}$ calculation based on 1-D recuperator temperature modeling with 20 nodes
 - UA errors up to 80% for LTRs if endpoint temperature formulas are used
- **Valid for:**
 - $5 \leq Q \leq 3,000 \text{ MW}_{\text{th}}$
 - $T_{max} < 585 \text{ }^{\circ}\text{C}$
 - $0.7 \leq \Delta P \leq 4 \text{ bar}$
 - $21 \leq P \leq 32 \text{ MPa}$

$$C = 49.45 \text{ } UA^{0.7544} \times f_T$$

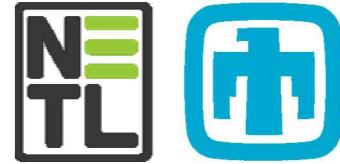
$$f_T = \begin{cases} 1 & \text{if } T_{max} < 550 \text{ }^{\circ}\text{C} \\ 1 + 0.02141(T_{max} - 550 \text{ }^{\circ}\text{C}) & \text{if } T_{max} \geq 550 \text{ }^{\circ}\text{C} \end{cases}$$


Component	Recuperators
Number of Quotes	24
Ave. Confidence Rating	3.1
Scaling Parameter, SP	UA
Units	W/K
SP Coefficient: a	49.45
SP Exponent: b	0.7544
T Coefficient: c	0.02141
SP Range: Low	1.60E+5
SP Range: High	2.15E+8
Uncertainty: Low	-31%
Uncertainty: High	38%
Installation Cost: Materials	2%
Installation Cost: Labor	3%

Recuperator Cost Algorithm

Comparison with Existing Correlations

- **Developed cost algorithm is compared to models from literature**
 - Carlson et al.³ and Zada et al.⁴ models
 - Both these models are based on linear scaling with respect to UA
 - T_{max} set to 488 °C
- **New cost algorithm is consistent with:**
 - Carlson model for $UA < 10^6$ W/K
 - Zada model for $UA \sim 10^6$ W/K
- **Industry feedback indicated that the developed model**
 - Is able to capture the flattening of the cost curve for higher values of $UA (> 10^6$ W/K)
 - Over predicts cost for small scale heat exchangers ($UA < 10^6$ W/K)



³ Carlson, Matthew D., Bobby M. Middleton, and Clifford K. Ho. "Techno-Economic Comparison of Solar-Driven SCO_2 Brayton Cycles Using Component Cost Models Baseline With Vendor Data and Estimates", 2017

⁴ Kyle R. Zada, Ryan Kim, Aaron Wildberger, and Carl P. Schalansky. "Analysis of Supercritical CO_2 Brayton Cycle Heat Exchanger Size and Capital Cost with Variation of Layout Design", 2018

Direct Air Cooler Cost Algorithm

Direct Dry sCO₂ Coolers

- **Overall conductance, UA selected as the scaling parameter**

- Overall conductance, UA is a function of the sCO₂ conditions, ambient air conditions and bay geometrical parameters such as number of tube rows, tube passes etc.
- UA is calculated using discretized approach for crossflow heat exchangers⁵

- **Valid for:**

- $25 \leq Q \leq 575 \text{ MW}_{\text{th}}$
- $T_{\text{max}} < 170 \text{ }^{\circ}\text{C}$
- $5 \leq T_{\text{amb}} \leq 35 \text{ }^{\circ}\text{C}$
- $0.5 \leq \Delta P \leq 1.5 \text{ bar}$
- $5.4 \leq P \leq 10 \text{ MPa}$

Component	Direct air coolers
Number of Quotes	11
Ave. Confidence Rating	4.0
Scaling Parameter, SP	UA
Units	W/K
SP Coefficient: a	32.88
SP Exponent: b	0.75
SP Range: Low	8.60E+5
SP Range: High	7.50E+7
Uncertainty: Low	-25%
Uncertainty: High	28%
Installation Cost: Materials	8%
Installation Cost: Labor	12%

$$C = 32.88 \text{ } UA^{0.75}$$

⁵ H. A. Navarro and L. C. Cabezas-Gómez, "Effectiveness-NTU computation with a mathematical model for cross-flow heat exchangers," *Brazilian Journal of Chemical Engineering*, vol. 24, no. 4, pp. 509-521, 2007.

Compressor Cost Algorithms

Integrally Geared and Barrel Type Centrifugal Compressors

- **Motor or turbine driver costs are calculated using separate algorithms, and are excluded in these models**
- **Integrally geared centrifugal compressors:**
 - Shaft power, \dot{W}_{sh} selected as the scaling parameter
 - Valid for: $1.5 \leq \dot{W}_{sh} \leq 200 \text{ MW}_{sh}$, $6.5 \leq P_{in} \leq 9 \text{ MPa}$ and $24.5 \leq P_{out} \leq 34.5 \text{ MPa}$
- **Barrel type centrifugal compressors:**
 - Inlet volumetric flow, \dot{V}_{in} selected as the scaling parameter
 - Valid for: $0.1 \leq \dot{V}_{in} \leq 2.4 \text{ m}^3/\text{s}$, $7.6 \leq P_{in} \leq 8.2 \text{ MPa}$ and $21 \leq P_{out} \leq 25 \text{ MPa}$

$$C = a SP^b$$

Component	Integrally geared compressors	Barrel type compressors
Number of Quotes	15	4
Ave. Confidence Rating	2.7	2.0
Scaling Parameter, SP	Shaft Power	Volumetric Flow
Units	MW_{sh}	m^3/s
SP Coefficient: a	1,230,000	6,220,000
SP Exponent: b	0.3992	0.1114
SP Range: Low	1.5	0.1
SP Range: High	200	2.4
Uncertainty: Low	-40%	-30%
Uncertainty: High	48%	50%
Installation Cost: Materials	8%	8%
Installation Cost: Labor	12%	12%

Turbine Cost Algorithms

Axial and Radial Turbines

- **Generator and gearbox costs have been subtracted from turbine quotes based on separate cost algorithms**
- **Axial Turbines:**
 - Shaft power, \dot{W}_{sh} selected as the scaling parameter
 - Valid for: $10 \leq \dot{W}_{sh} \leq 750 \text{ MW}_{sh}$, $T_{max} < 730 \text{ }^{\circ}\text{C}$ and $24 \leq P_{in} \leq 28 \text{ MPa}$
- **Radial Turbines:**
 - Shaft power, \dot{W}_{sh} selected as the scaling parameter
 - Valid for: $8 \leq \dot{W}_{sh} \leq 35 \text{ MW}_{sh}$, $T_{max} < 700 \text{ }^{\circ}\text{C}$ and $20 \leq P_{in} \leq 26 \text{ MPa}$

$$C = a SP^b \times f_T$$

$$f_T = \begin{cases} 1 & \text{if } T_{max} < 550 \text{ }^{\circ}\text{C} \\ 1 + d(T_{max} - 550)^2 & \text{if } T_{max} \geq 550 \text{ }^{\circ}\text{C} \end{cases}$$

Component	Axial turbines	Radial turbines
Number of Quotes	6	4
Ave. Confidence Rating	3.7	4.0
Scaling Parameter, SP	Shaft Power	Shaft Power
Units	MW_{sh}	MW_{sh}
SP Coefficient: a	182,600	406,200
SP Exponent: b	0.5561	0.8
T^2 Coefficient: d	1.11E-4	1.14E-5
SP Range: Low	10	8
SP Range: High	750	35
Uncertainty: Low	-25%	-32%
Uncertainty: High	30%	51%
Installation Cost: Materials	8%	8%
Installation Cost: Labor	12%	12%

Other Turbomachinery Cost Algorithms

Motors, Generators, and Gearboxes

• Motors:

- Derived for three different motor types using data from Aspen Process Economic Analyzer
- Scaled with motor power, \dot{W}_e

• Generators:

- Scaled with electric power output, \dot{W}_e
- Valid for $4 \leq \dot{W}_e \leq 750 \text{ MW}_e$
(4-pole at small scales and 2-pole at large scales)

• Gearboxes:

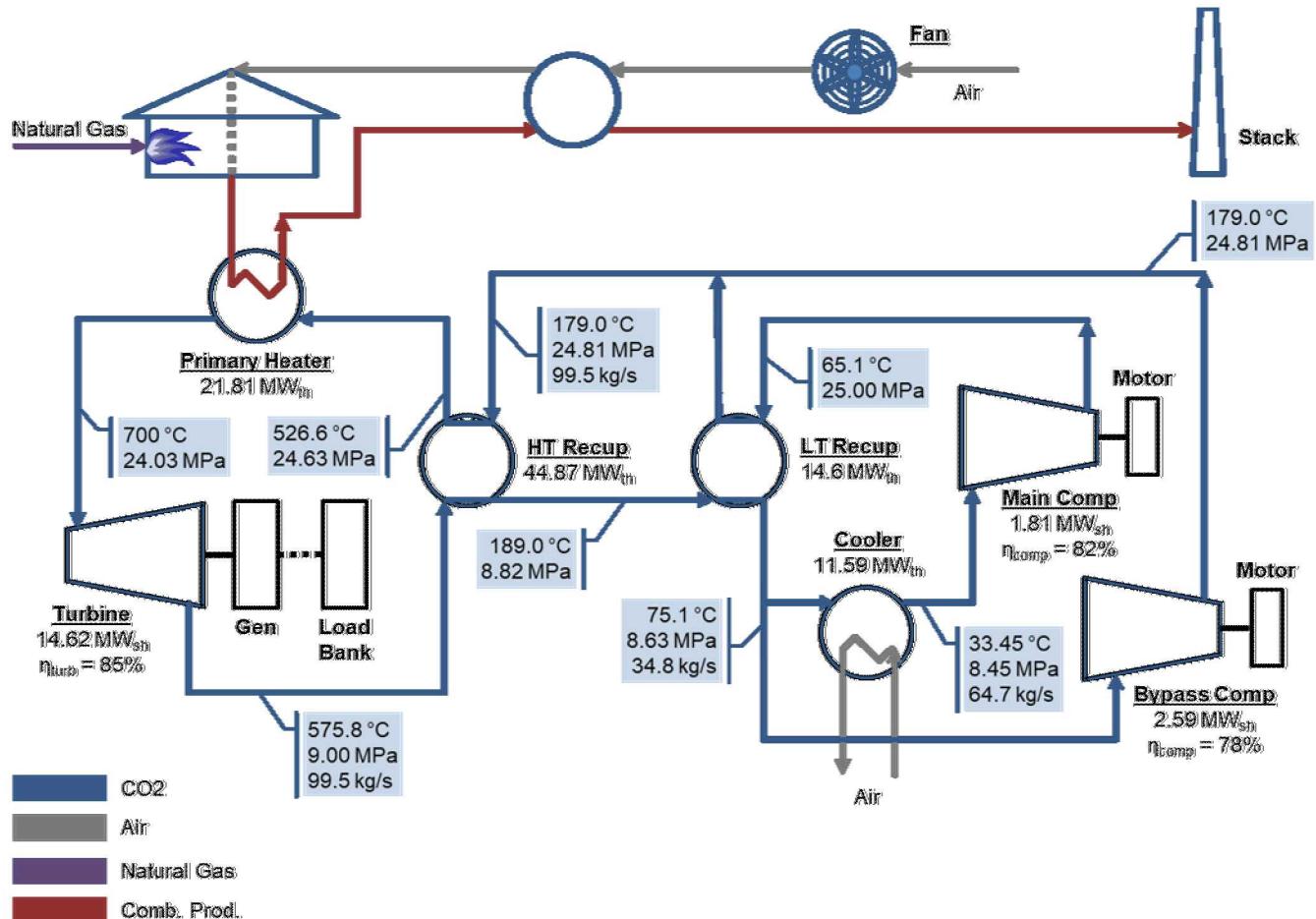
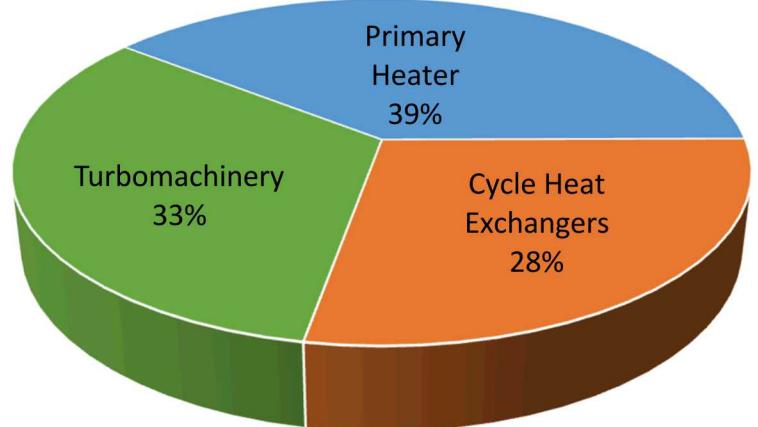
- Needed for turbine power $< 65 \text{ MW}_e$
- Scaled with shaft power, \dot{W}_{sh}
- Valid for $4 \leq \dot{W}_{sh} \leq 10 \text{ MW}_{sh}$ and $25,000 \leq \text{Shaft speed} \leq 29,000 \text{ RPM}$

$$\text{Cost} = a SP^b$$

Component	Gearboxes	Generators	Explosion proof motors	Synchronous motors	Open drip-proof motors
Number of Quotes	7	8	model	model	model
Ave. Confidence Rating	4.1	4.0	4.0	4.0	4.0
Scaling Parameter, SP	Shaft Power	Electric Power	Electric Power	Electric Power	Electric Power
Units	MW_{sh}	MW_e	MW_e	MW_e	MW_e
SP Coefficient: a	177,200	108,900	131,400	211,400	399,400
SP Exponent: b	0.2434	0.5463	0.5611	0.6227	0.6062
SP Range: Low	4	4	0.00075	0.15	0.00075
SP Range: High	10	750	2.8	15	37
Uncertainty: Low	-15%	-19%	-15%	-15%	-15%
Uncertainty: High	20%	23%	20%	20%	20%
Installation Cost: Materials	8%	8%	8%	8%	8%
Installation Cost: Labor	12%	12%	12%	12%	12%

Summary of Cost Algorithms

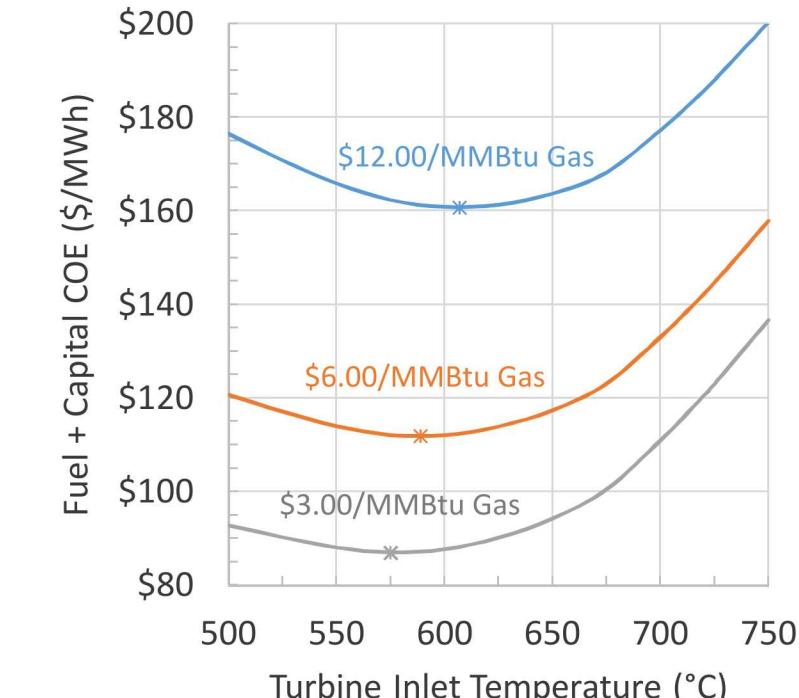
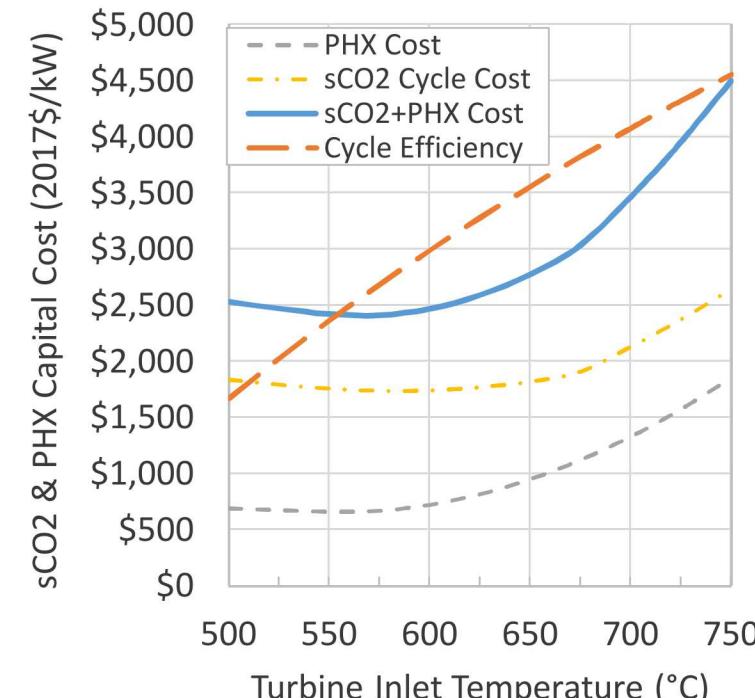
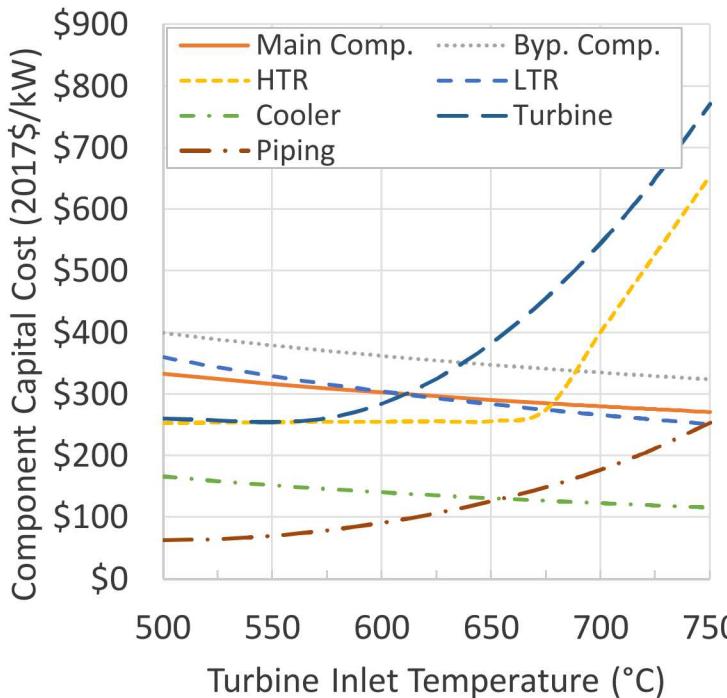
$$C = a \cdot SP^b \times f_T \quad f_T = \begin{cases} 1 & \text{if } T_{max} < 550 \text{ } ^\circ\text{C} \\ 1 + c(T_{max} - T_{bp}) + d(T_{max} - T_{bp})^2 & \text{if } T_{max} \geq 550 \text{ } ^\circ\text{C} \end{cases}$$



Component	Scaling Parameter (Units)	Coefficients				Database Range (Range of Validity)	Uncertainty Range
		a	b	c	d		
Coal-fired heaters	Q (MW _{th})	820,800	0.7327	0	5.4e-5	187 to 1,450 MW _{th}	-23% to +26%
Coal-fired heaters	UA (MW _{th})	1,248	0.8071	0	5.3e-6	7.4e5 to 5.9e6 W/K	-16% to +21%
Natural gas-fired heaters	Q (MW _{th})	632,900	0.60	0	5.4e-5	10 to 50 MW _{th}	-25% to +33%
Recuperators	UA (W/K)	49.45	0.7544	0.02141	0	1.6e5 to 2.15e8 W/K	-31% to +38%
Direct air coolers	UA (W/K)	32.88	0.75	0	0	8.6e5 to 7.5e7 W/K	-25% to +28%
Radial turbines	\dot{W}_{sh} (MW _{sh})	406,200	0.8	0	1.137e-5	8 to 35 MW _{sh}	-32% to +51%
Axial turbines	\dot{W}_{sh} (MW _{sh})	182,600	0.5561	0	1.106e-4	10 to 750 MW _{sh}	-25% to +30%
IG centrifugal compressors	\dot{W}_{sh} (MW _{sh})	1,230,000	0.3992	0	0	1.5 to 200 MW _{sh}	-40% to +48%
Barrel type compressors	\dot{V}_{in} (m ³ /s)	6,220,000	0.1114	0	0	0.1 to 2.4 m ³ /s	-30% to +50%
Gearboxes	\dot{W}_{sh} (MW _{sh})	177,200	0.2434	0	0	4 to 10 MW _{sh}	-15% to +20%
Generators	\dot{W}_e (MW _e)	108,900	0.5463	0	0	4 to 750 MW _e	-19% to +23%
Explosion proof motors	\dot{W}_e (MW _e)	131,400	0.5611	0	0	0.00075 to 2.8 MW _e	-15% to +20%
Synchronous motors	\dot{W}_e (MW _e)	211,400	0.6227	0	0	0.15 to 15 MW _e	-15% to +20%
Open drip-proof motors	\dot{W}_e (MW _e)	399,400	0.6062	0	0	0.00075 to 37 MW _e	-15% to +20%

Application of Cost Algorithms

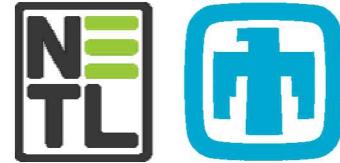
Baseline 10 MW_e plant cost

- **Operating conditions for a 10 MW_e plant taken from Zitney & Liese⁷**
 - Turbine Inlet: 700 °C, 24 MPa
- **sCO₂ power block installed cost, excluding piping: \$27.1M**
 - 1.4% increase in cost with turbo-driven compressors

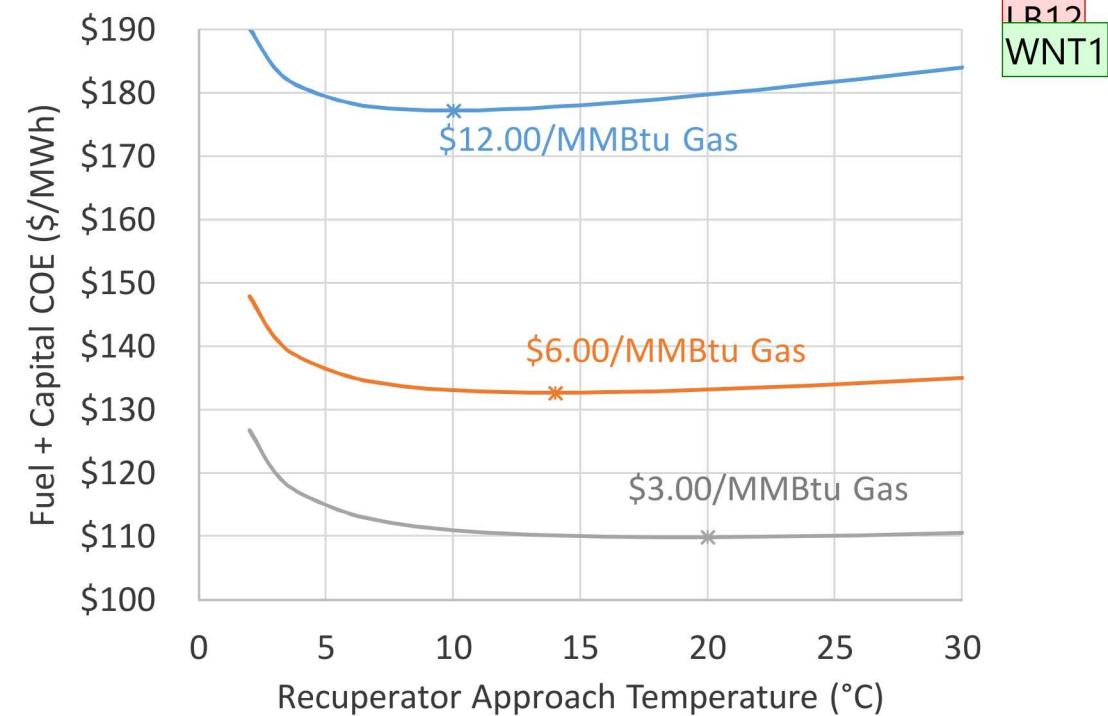
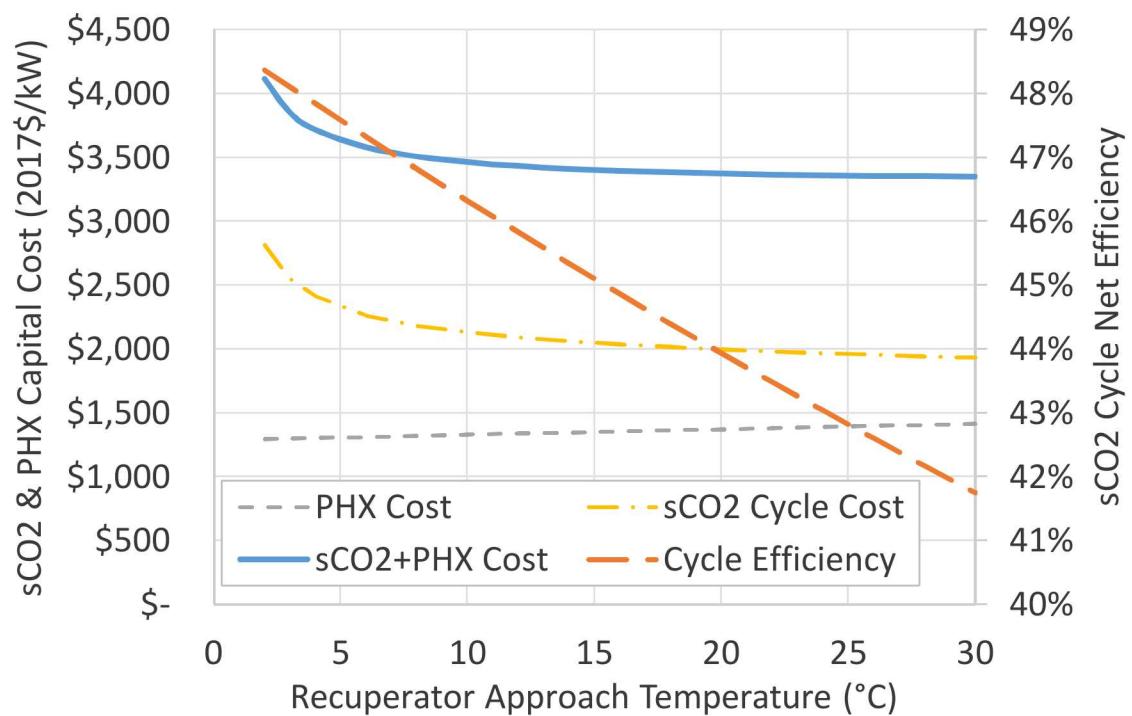



⁷ S. E. Zitney and E. A. Liese, "Dynamic Modeling and Simulation of a 10 MWe Supercritical CO₂ Recompression Closed Brayton Power Cycle for Off-Design, Part-Load, and Control Analysis," in The 6th International Supercritical CO₂ Power Cycles Symposium, Pittsburgh, 2018.

Application of Cost Algorithms

Sensitivity of 10 MW_e Plant to Turbine Inlet Temperature



- Using a spreadsheet cycle model developed with REFPROP, sensitivity analysis was conducted using the new cost algorithms (maintaining 10 MW_e net plant output)
- Optimized plant balances annualized capital cost against expected fuel cost
- Economics assume 80% capacity factor, 30 yr. plant life, scaled capital cost

Application of Cost Algorithms

Sensitivity of 10 MW_e Plant to Recuperator Approach Temperature

- Using a spreadsheet cycle model developed with REFPROP, sensitivity analysis was conducted using the new cost algorithms (maintaining 10 MW_e net plant output)
- Optimized plant balances annualized capital cost against expected fuel cost
- Economics assume 80% capacity factor, 30 yr. plant life, scaled capital cost

LB12 Mostly curious, but is it easy to get the effectiveness value that relates to the optimal 20 C approach for \$3 gas? With earlier cost models, I was finding that the optimal effectiveness was around 90%.

Lance, Blake, 6/10/2019

WNT1 For 20 C approach temp, I get an LTR effectiveness of 86.7%, and an HTR effectiveness of 94.7%

Weiland, Nathan T., 6/11/2019

Potential Future Work

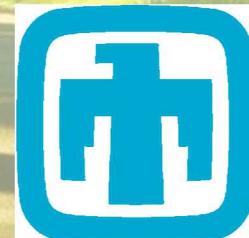
Potential Improvements and Additional Cost Algorithms

- **Extend the recuperator cost algorithm to higher temperatures ($> 585^{\circ}\text{C}$) for higher turbine inlet temperature indirect and direct sCO₂ plant applications**
 - Additional pressure drop cost scaling factor might also be included
- **Develop separate cost algorithm for sCO₂-to-water coolers, which should be lower cost than recuperators**
- **Revise high-uncertainty cost correlations for radial turbines, integrally-geared and barrel-type compressors with additional high-quality vendor quotes**
- **Extend gearbox cost algorithm size range to $\sim 60 \text{ MW}_{\text{sh}}$ (currently 4 to 10 MW_{sh})**
- **Develop cost algorithms for other indirect sCO₂ primary heaters**
 - Waste heat recovery applications
 - Coal-fired CFB (Oxy-fired, Air-fired)
 - CSP applications
 - Nuclear
- **Develop cost algorithms for other turbines and supporting components**
 - Turbine stop and control valves
 - Direct sCO₂ combustor and turbine

- **Compilation of vendor quotes across multiple U.S. DOE National Laboratories has enabled collaborative development of detailed cost scaling relationships for sCO₂ components**
 - Developed cost algorithms span multiple sCO₂ applications (nuclear, fossil, solar) and size ranges (5-750 MW_e)
 - Temperature correction factors account for the cost increase associated with higher temperature material upgrades
 - Turbo-machinery costs are broken down to allow exploration of turbomachinery configurations cost implications
 - Uncertainties on the developed cost scaling relationships are quantified
 - Recommended installation cost factors are presented
- **Resulting cost correlations are reasonably accurate and comprehensive:**
 - Enables a shift from efficiency- to cost of electricity-based sCO₂ plant optimization
 - Ultimately results in accelerated commercialization of sCO₂ power cycles
- **So, let's see your cost-optimized sCO₂ plants!**

Questions?

Thank you for your time and attention!



nathan.weiland@netl.doe.gov

412-386-4649

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY

Sandia
National
Laboratories