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2 MoS2 - How it Works

molybdenum disulphide
p = 0.02 - 0.06 (inert @ 1N)
p = 0.15 - 0.25 (humid air @ 1N)

•
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3 Motivation Environmental Sensitivity & Aging

Space:
operate in vacuum (+atomic oxygen in
low earth orbit)

store months — years before use;
generally non-serviceable

operating temperatures from 50 — 300K,
depending on location

large investments of time and money

Precision Mechanisms:
inert gas near Patm, trace 02, H20,
outgassing species

store for decades; non-serviceable

operating temperatures 200 — 350K

large investments of time and money

consequences (political, societal) of
failure are unacceptable

1 cm



4 Bad Actors - Environment & Aging
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- Oxidation can occur in space (AO - fast), air at high temps (02 — fast) and room temp
(H20 — slow)



5 Bad Actors - Environment & Aging
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- Oxidation can occur in space (AO - fast), air at high temps (02 — fast) and room temp
(H20 — slow)

- Water enhances static and kinetic friction behaviors via increased shear between layers



6 Bad Actors Environment & Aging
fr

ic
ti

on
 c
oe

ff
ic

ie
nt

 data from
cycle 140

Low friction is restored after wear
removes the oxidized surface film
and restores the lubricous
MoS2surface layer.
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- Oxidation can occur in space (AO - fast), air at high temps (02 — fast) and room temp
(H20 — slow)

- Water enhances static and kinetic friction behaviors via increased shear between layers

Many components operate infrequently and for very few cycles — effectively living in
the run-in regime



7 Co-Influencing Factors: Microstructure & Oxidation

F,

Ordered films Disordered films

- Basally oriented or burnished (ordered) films
lessen need of reorientation, reducing friction
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8 Co-Influencing Factors: Microstructure & Oxidation

Ordered films

4̀41:1"Ci-.144%.olinc30<),APt. 

Disordered films

Basally oriented or burnished (ordered) films
lessen need of reorientation, reducing friction

Also reduces edge:basal surface ratio, reducing
run-in effects from oxidation

- Problem solved!

Curry et al., ACS AMI 2017
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9 Run-In Solves Everything

- Recipe for success: run film in to steady state
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1
10 Run-ln Solves Everything... Except Time...

- Recipe for success: run film in to steady state... and watch friction increase upon return
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2 hr
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All tests run in same wear track
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11 Re-Run-In Time Matters

- Increase in initial friction is monotonic,
depending on time in between; run-in
duration also affected

- This "stop-time" effect is observable in
vacuum av
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12 Re-Run-In Time Matters

- Increase in initial friction is monotonic,
depending on time in between; run-in
duration also affected

- This "stop-time" effect is observable in
vacuum

- Higher vacuum levels also exhibit this
behavior; more abrupt transition at longer
dwell times

- Run-in is longer and has a consistently
different shape, along with steady state
variation at high vacuum
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1
13 Re-Run-In Time Matters
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14 Re-Run-In Pressure Matters too!
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- View data as deltas - can plot the difference between previous steady state and
returning initial friction

- Observe stop time across a range of pressures, from 2x10-1 to 7x10-9 torr



15 Re-Run-In Pressure Matters too!
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- View data as deltas - can plot the difference between previous steady state and returning
initial friction

- Observe stop time across a range of pressures, from 2x10-1 to 7x10-9 torr

- Low and high pressures exhibit distinct behaviors over 2-3 orders of magnitude...
Friction traces also distinct... suggests different mechanisms responsible



16  What's Happening: Competing Mechanisms of Re-Run-In

- Obvious Theory: Concentration
gradient of contaminants at surface
& through bulk affecting friction



17 What's Happening: Competing Mechanisms of Re-Run-In

- Obvious Theory: Concentration
gradient of contaminants at surface
& through bulk affecting friction

- Have observed adsorption
isotherms for MoS2 in literature
(Johnston & Moore 1964);

Adsorption/Desorption

G %
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18 What's Happening: Competing Mechanisms of Re-Run-In

- Obvious Theory: Concentration
gradient of contaminants at surface
& through bulk affecting friction

- Have observed adsorption
isotherms for MoS2 in literature
(Johnston & Moore 1964); Colbert
also showed ability of MoS2 films to
take up water and diffusivity (Colbert
2012)
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19 Simple Coverage Model

d0
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- Can simple fractional coverage model
help?
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20 Simple Coverage Model

dO

dt
k k

1
0.04 -

- Can simple fractional coverage model 0.02 -
help?

- K & s help account for diffusion and
sticking (adsorption)

- Fits decently well; captures asymptotes
and shape of curves
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21 Simple Coverage Model

de 
k
s 
(1-0 -1(59

dt 

0= e

0.04 -

- Can simple fractional coverage model 0.02 -
help?

- K & s help account for diffusion and
sticking (adsorption)

- Fits decently well; captures asymptotes
and shape of curves

- Adsorbate competition? Different sites?
Vapor pressures?
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"All models are wrong, but some are useful"
- George Box



22 Not Alone: Re-Run-ln Modeling in Literature
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Matsunaga & Hoshimoto attempted including diffusion in their own interpretation
on MoS2 films at a constant pressure



23 Not Alone: Re-Run-ln Modeling in Literature
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Matsunaga & Hoshimoto attempted including diffusion in their own interpretation
on MoS2 films at a constant pressure

- Heimberg el al. looked at time & speed dep for DLC via Elovich/Langmuir

Langmuir is pressure dependent, not time (maybe a kinetic model exists?)



24 Not Alone: Re-Run-ln Modeling in Literature
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Matsunaga & Hoshimoto attempted including diffusion in their own interpretation
on MoS2 films at a constant pressure

- Heimberg el al. looked at time & speed dep for DLC via Elovich/Langmuir

Langmuir is pressure dependent, not time (maybe a kinetic model exists?)

In all cases (two) either the interpretation/physics didn't match — or the fit
didn't.



25 Testing the Mechanism - Playing with Temperatu
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- At low temperature, likely ice or water retained in subsurface

- Noticed prolonged (5K cycle) run-in at -100 C (5E-9 torr) on samples prior to baking out
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26  Testing the Mechanism - Playing with Temperature

- At low temperature, likely ice or water retained in subsurface

- Noticed prolonged (5K cycle) run-in at -100 C (5E-9 torr) on samples prior to baking out

- Baking films out at 145C for 24 hours greatly diminishes resulting run-in at low temps

- Water likely diminished at surface/subsurface & diffusion much slower at low temps



27 Does baking out shutdown re-run-in?
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- Dwell times still persist, even after baking out, albeit at longer dwells — lots of water remains



28 Does baking out shutdown re-run-in?
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leading to longer
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- Dwell times still persist, even after baking out, albeit at longer dwells — lots of water remains

- Likely removing water from the surface of the film — reducing concentration and slowing
diffusion... more testing necessary
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29 Comparisons to "Initial" Run-in
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30 Comparisons to "Initial" Run-in
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- High pressure case very convincing — initial run-in very similar to longest dwell re-run-in;
Suggests run-in on impinged films may be mostly adsorbate driven, not microstructure

- Low pressure case exhibits same initial friction, but no "shoulders" typically seen
Interpretation still incoming; may be initially adsorbed water



31 Conclusion

0.04
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0 00

- Re-run-in strongly influenced by adsorbed/latent water, changes with time and pressure and diminished but
not eliminated bylpaking out

- Competing mechanisms in re-run-in behavior at high pressures (adsorption) versus low pressures (diffusion)

- Simple coverage model fits data well, requires tuning and use of relevant materials parameters governing
behavior

- Baking out films helps remove water and prolong re-run-in — much water still remains in MoS2 films

- Future work
O How temperature/microstructure change diffusivity/sticking prob of contaminants to in re-run-in
O Tune coating design to aid in minimizing latent water
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34  APPENDIX



35 What's Happening: Proposed Mechanisms of Re-Run-In

1
 Ausorption/desorption in vacuum
- water/hydrocarbons - drops off at
low pressures with loss of hydrocarbont.
-dominant factor at high pressures
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need more data & functional forms that make
physical sense for this application

Concentration of contaminants in
vacuum do not decrease linearly;

different vapor pressures Et
sticking coefficients

o high pressure data (2E-1 to 1E-3 torr)
o low pressure data (1E-6 to 7E-9 torr)
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36 . Run Films In before use! Industry Standard! Shows Over!

A protective Pt layer

\ -"IOW
highly o riented N2s p rayed MoS2 fi I m

lk • -4.44

highly ordered (N2 sprayed) [1]

-- I

- To make things simple, we focused
on ordered, impinged films

Little to no reorientation required —
exhibit lower initial friction coefficients

o Less susceptibility to environment
(Krick)
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37 Run-In Governed by Microstructure

- Sprayed (ordered) films exhibit
consistently lower initial friction than
sputtered (disordered) films

- Ordered films unaffected by
present of water initially

- Where long-range, ordered films
exist — they persist. It is hypothesized
that water poisons this ability.
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38 Run-In Factor: Oxidation

disordered structure

%174-8-6.2c.e6c

highly-ordered structure

- Oxidation resistance should benefit in the same way
that run-in does from ordered surfaces

- Higher degree of basal orientation and less available
edge site (large crystals) should reduce oxidation

- Ordered structure also provides more tortuous path
into the bulk for further interactions



39 Oxidation vs Microstructure - XPS & LEIS Study

Mo 3p signal - Mo03:MoS2 ratio

2.0 7 • ordered
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MoS2 lamellae

- Look at amount of Mo as sulfide or oxide after
exposures to 02 @ 250C and Atomic Oxygen (30
min)



40 Oxidation vs Microstructure - XPS & LEIS Study

Mo 3p signal - Mo03:MoS2 ratio

2.0 -. . ordered

7 0 disordered
1.6 -

0.0
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ö 2

0.41

0.19 0.23

1.86

as deposited HT

oxygen : molybdenum ratio
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ordered disordered _
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-s- 02, 250°C -0- 02, 250°C

mu-O , on , 0 9 0 ,
0.5 1.0 1.5 2.0 2.5 3.0 3 5

approximate depth (nm)

i i i i i i
1 2 3 4 5 6

MoS2 lamellae

- Look at amount of Mo as sulfide or oxide after
exposures to 02 @ 250C and Atomic Oxygen (30
min)

Oxygen Gas (30 min @ 250°C) 

- XPS indicates minimally more oxide for ordered
films while disordered films have more

- LEIS shows this is mostly surface limited for
ordered films and through the surface for disordered



41 Oxidation vs Microstructure - XPS & LEIS Study

Mo 3p signal - Mo03:MoS2 ratio

2.0 - . ordered

. El disordered
1.6 -

0.4 -

0.0

0.41

0.19

0.82

A

1.04

as deposited AO

oxygen : molybdenum ratio

ordered disordered _
o as dep. O as dep.
—m— AO -0 AO

0.5 1.0 1.5 2.0 2.5
approximate depth (nm)

3.0 3 5

1 2 3 4 5 6
MoS2 lamellae

- Look at amount of Mo as sulfide or oxide after
exposures to 02 @ 250C and Atomic Oxygen (30
min)

Oxygen Gas (30 min @ 250°C) 

- XPS indicates minimally more oxide for ordered
films while disordered films have more

- LEIS shows this is mostly surface limited for
ordered films and through the surface for disordered

Atomic Oxygen (30 min @ RT) 

- AO exposures show similar increases in oxidation
via XPS

- Again LEIS shows oxygen only at surface for
ordered films and not much below the surface for
disordered



42 Friction comparison for HT 02 aged coupons
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Exposing Films to oxygen gas at 250°C for 30 min revealed differences in
run-in behavior

- Both films were effected, with disordered films experience much longer high
friction run-in phases

- Believe prolonged run-in for disordered films is due to oxygen diffused into
the subsurface
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43 Friction comparison for AO aged coupons
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- Exposing Films to atomic oxygen at RT for 30 min revealed minimal
differences in run-in behavior

Attribute the slight increases to thin layer of oxide formed on the surface
(confirmed by LEIS depth profile)

Recent (and past) examples in literature suggest ozone and atomic oxygen
form passivating surface layer preventing further interaction with oxygen
(Sen et al., J. Appl. Phys, 2014)
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44 Oxidation vs Microstructure: Mechanisms

High density of edge
sites at surface
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45 Oxidation vs Microstructure: Mechanisms

High density of edge
sites at surface

/subsurface promote
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46 Oxidation vs Microstructure: Mechanisms

High density of edge
sites at surface

/subsurface promote
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47 Oxidation vs Microstructure: Mechanisms

High density of edge
sites at surface

/subsurface promote
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Oxidation studies on ordered and disordered films reveal the importance of
large, basally oriented phases in preventing oxidation



48 Langmuir Equation Adsorption Approximation

- If adsorption/desorption are at play,
Langmuir might help explain results

- Adsorbate behaves as ideal gas at
isothermal conditions; describing the
fraction of occupancy of an adsorbent
at possible adsorption sites

0.04 -

2
, 0.02 -

0.00

o high pressure data (2E-1 to 1E-3 torr)
o low pressure data (1E-6 to 7E-9 torr)

high pressure Langmuir fit
- - low pressure Langmuir fit
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1+ bx 0o
O 0
O 0

a = 0.0317
b = 4.083E-4
R2= 0.965

-----I 0 0
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49 Langmuir Equation Adsorption Approximation

- If adsorption/desorption are at play,
Langmuir might help explain results

Treatincr
pressure

as time?

- Adsorbate behaves as ideal gas at
isothermal conditions; describing the
fraction of occupancy of an adsorbent
at possible adsorption sites

0.04 -

, 0.02 -

0.00

o high pressure data (2E-1 to 1E-3 torr)
o low pressure data (1E-6 to 7E-9 torr)

high pressure Langmuir fit
- - low pressure Langmuir fit
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a = 0.0317
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5o Langmuir Equation Adsorption Approximation

- If adsorption/desorption are at play,
Langmuir might help explain results

Treatincr
pressur„

I t" aS time?

- Adsorbate behaves as ideal gas at
isothermal conditions; describing the
fraction of occupancy of an adsorbent
at possible adsorption sites

- Fits the high pressure curves better,
not capturing the roll-off at long dwell
times for low pressures

- Certain assumptions may not apply

• Absence of corrugation

• All sites being equivalent (basal vs edge)

• Adsorbate interactions (water vs
hydrocarbons)

0.04 -

, 0.02 -

0.00

o high pressure data (2E-1 to 1E-3 torr)
o low pressure data (1E-6 to 7E-9 torr)

high pressure Langmuir fit
- - low pressure Langmuir fit
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51 Exponential Growth Diffusion Approximation

- As Matsunaga suggested — behavior
might be best described by diffusion
processes

- Borrowed models from surface
concentration via grain boundary
diffusion...

0.04 -

, 0.02

0.00

o high pressure data (2E-1 to 1E-3 torr)
o low pressure data (1E-6 to 7E-9 torr)

high pressure exp diff fit
low pressure exp diff fit

it/ = a rl exp (—bx)1

a = 0.0278 0

R2= 0.9' 
-F..

b = 3.298E-5
9

6Di• 0G g 0 0 20 a
a = 0.035

b = 3.556E-5

R2 = 0.962
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G. E. P. Box and H. L. Lucas (1959)"Design of Experiments in Non-Linear
Situations" Biometrika Vol. 46 No. 1 pp. 77-80.



52 Exponential Growth Diffusion Approximation

- As Matsunaga suggested — behavior
might be best described by diffusion
processes

- Borrowed models from surface
concentration via grain boundary
diffusion...

- Does better job at capturing roll-off at
lower pressures, not so great at higher
pressures

- Unsure of physical meaning in model,
would need to relate to materials
parameters

o high pressure data (2E-1 to 1E-3 torr)
• low pressure data (1E-6 to 7E-9 torr)

0.04 - 
high pressure exp diff fit
low pressure exp diff fit

= a [1 — exp (—bx)1

, 0.02

0.00

a = 0.0278 0

b = 3.298E-5 
0
0g 0 0 000 a

a = 0.035

b = 3.556E-5

R2 = 0.962

0

0

1 10 100 1000 10000 100000 1000000

dwell time (s)

G. E. P. Box and H. L. Lucas (1959)"Design of Experiments in Non-Linear
Situations" Biometrika Vol. 46 No. 1 pp. 77-80.



53 Exponential Growth Diffusion Approximation

- As Matsunaga suggested — behavior
might be best described by diffusion
processes

- Borrowed models from surface
concentration via grain boundary
diffusion...

- Does better job at capturing roll-off at
lower pressures, not so great at higher
pressures

- Unsure of physical meaning in model,
would need to relate to materials
parameters

o high pressure data (2E-1 to 1E-3 torr)
• low pressure data (1E-6 to 7E-9 torr)

0.04 - 
high pressure exp diff fit
low pressure exp diff fit

= a [1 — exp (—bx)1

, 0.02

0.00

a = 0.0278

R2= 0.9'

b = 3.298E-5

G g 0
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"All models all wrong - but some are useful" - G. Box

G. E. P. Box and H. L. Lucas (1959)"Design of Experiments in Non-Linear
Situations" Biometrika Vol. 46 No. 1 pp. 77-80.



54 Molecular Dynamics Approach
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•Take systems that have "run-in" (i.e. reached steady-state shearing)

•Remove top layers

•Apply 02, AO or H20 at 100 atm

•Replace top layers

•



55 How do oxygen and water interact?

0.15-

M,

I
02 Atomic 0 H20 defective

°Friction goes down?

•This is unfair...

• Water and oxygen passivate defect sites

• Need to do this in the pure system, too

• Look at non-stoichiometric (i.e. defect-free) nanoplatelets

•



56 Friction in Environments
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•Changes with added oxygen or water match experimental results



57 Effects of Oxygen on Inter-platelet bonding
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oxygen passivated defect free
•Oxygen bonds to defect sites & prevents formation of larger sheets

•Molecular oxygen looks very similar



58 Effects of water on Inter-platelet bonding

water passivated defect free

•Water also bonds to defect sites & prevents formation of larger sheets

•Water aggregates with itself more than oxygen does



59 Counts of inter-platelet bonds confirm
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AO 02 H20 defects defect free

Environmental species interrupt formation of larger flakes



60 What can we say about chemistry?

600-

200-

o

molecular oxygen
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u)-0co_o
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02

water

Oxygen
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H-H water H-O water waters Mo-O 02 H2

*Water does not dissociate (no 02 or H2 formed)

•Molecular 0 shows little dissociation (mostly in 02)

•Atomic oxygen forms little 02

atomic oxygen

Mo-O 02 Oxygen



61 Charge on Oxygens confirms chemistry
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Oxygen Charge
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Tokarz-Sobieraj et al.
Surf. Sci. 2001

•Oxygen bonded to Mo has partial charge from
-0.48 (Tokarz-Sobieraj et al. Surf. Sci. 2001) to
-0.33 (Yin et al., J. Mol. Model 2001).

•Oxygen in water has partial charge from -0.6
to -0.8(Astrand, et al., J. Phys. Chem. A 1998).

•Water shows only physisorption

•Atomic oxygen shows chemisorption

•Molecular oxygen shows slight amount of
chemisorption



62 Summary

•MoS2 shows purely elastic contact

•Shear is predominantly due to inter-lamellar interactions

•Simple model predicts temperature dependence

•Environment hinders formation of large sheets

•No chemistry with water

•Little chemistry with molecular oxygen

•Lots of chemistry with atomic oxygen

■



63 LEIS & MD Depth Profiles
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64 Elastic contact => Energy Barriers: Our work

flake translation direction
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65 Commensurate vs. Incommensurate Sliding
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Top View
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Barriers converge with increasing flake size; make a toy model
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Probabilitv & Failure to cross barrier:

(
pn exp
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fn =1— 13,

Total sliding probability & friction:

P slide = PrPi frP c
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67 Results of toy model
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6 8 I Fundamental Studies & Applied Challen2es
moving mechanical assemblies

(millimeters-centimeters)

photons

e

gc)

satellites
(meters)

surface composition°
ructura analysis's

ometers)

nanocomposite
synthesis

(nanometers - millimeters)

•
moving mechanical assemblies often have
1,000:1 reductions and friction manage-
ment is essential for successful operation
(almost every surface has a coating)

4 

solid lubricants &
coatings

(milimeter- micrometers)

molecular dynamics design
of adaptive tribofilms

multiscale & multivariate
tribometry

(nanometers - millimeters)



69 Effects of Microstructure

Nitrogen Spray Deposited Nio;

- Deliver Mo52 powder to surface in
dry N2 gas

- High kinetic energy imparted shears
MoS2 onto surface to produce a higher
orientation of basal planes.

- Similar to burnishing, large continu-
ous crystallites will form, reducing
presence of surface defects

deposition process

Nitrogen Spray &
MoS2 Powder

steel substrate

micro-abrasion
spray nozzle

tn

aj

highly oriented N12 sprayed MoS2 film

(002)

• N2 Sprayed MI Sputtered

substrate

I ' I
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70 I XPS Mo 3p Spectra for Aged MoS2

(A) ordered

--AL- MOS2 
as deposited

Mo03

 raw data

- fit data

400 395
binding energy (eV)

390 405 400 395
binding energy (eV)

•
Mo 3p signal - Mo03:MoS2 ratio

-
• ordered

1.8 - amorphous
1.6 -

1.4 -

12 -
1.04

1.0 -
0 0.82

0.8

0.6 -

0.41
0.4 -

0.2 - 0.19 0.23

0.0
as deposited HT 02 AO

Analysis
(11) Higher Mo03 concentration in as dep. PVD samples with higher ratio Mo03:M (0.41) t

(2) Minor increase of o03:MoS2 for ordered coatings after HT 02 (0.23)

(3) Significant increase in Mo03:MoS f«jr a orphous films (1

an sprayed (0.19)

.86) - likely ue t greater oxygen diffusion

(4) High Mo03 concentration for AO in ordered (0.82) and amorphous coatings (1.04), yet limited to first layer for
sprayed as shown in HS-LEIS

(5) XPS results agree well and co plement work done in HS-LEIS



71 HS-LEIS:Atomic Ratios vs Depth
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72 Role of Water in Modifying Friction - Chemistry

- How does water actually modify friction?

MD Simulations show water bonds to defect
sites and aggregates, preventing formation of
larger sheets

More edge sites likely enhance adsorption as
well, with more energetic and a higher number
and potential sites

- Water can also increase drag between
lamellae via polar bonding with water
molecules [1]

0.15

;,=5 0.10 -
"(5

c -
2 0.05 -U
LL

water passivated defect free

defect free

stoichiometric/
defective

[1] Holinksi Et Gansheimer, ASLE Transactions 1971
Vacuum 02 Atomic 0 H20



73 Role of Water in Modifying Friction Flake Kinetics

- Increased friction may be explained by flake rotation mechanisms

- Relies upon model recently developed establishing a link between the probability of flake
rotation as a function of temperature

- In this case, adsorption sites effectively pinning flake rotation, which then behaves in the same
fashion as we described earlier...
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